导航:首页 > 源码编译 > 插入排序运用了什么算法设计技术

插入排序运用了什么算法设计技术

发布时间:2023-10-02 00:45:34

1. 常见的排序算法—选择,冒泡,插入,快速,归并

太久没看代码了,最近打算复习一下java,又突然想到了排序算法,就把几种常见的排序算法用java敲了一遍,这里统一将无序的序列从小到大排列。

选择排序是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小元素,继续放在下一个位置,直到待排序元素个数为0。

选择排序代码如下:

public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i<10;i++) {

index = i;

for(int j = i + 1 ; j < 10 ; j++) {

if(arr[j] < arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("经过选择排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

冒泡排序是一种比较基础的排序算法,其思想是相邻的元素两两比较,较大的元素放后面,较小的元素放前面,这样一次循环下来,最大元素就会归位,若数组中元素个数为n,则经过(n-1)次后,所有元素就依次从小到大排好序了。整个过程如同气泡冒起,因此被称作冒泡排序。

选择排序代码如下:

public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i < 9 ; i++) {

for(int j = 0 ; j < 10 - i - 1 ;j++) {

if(arr[j] > arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("经过冒泡排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

插入排序也是一种常见的排序算法,插入排序的思想是:创建一个与待排序数组等大的数组,每次取出一个待排序数组中的元素,然后将其插入到新数组中合适的位置,使新数组中的元素保持从小到大的顺序。

插入排序代码如下:

public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i < length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] >= arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] < arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j < count - 1; j++) {

if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("经过插入排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i > index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}

快速排序的效率比冒泡排序算法有大幅提升。因为使用冒泡排序时,一次外循环只能归位一个值,有n个元素最多就要执行(n-1)次外循环。而使用快速排序时,一次可以将所有元素按大小分成两堆,也就是平均情况下需要logn轮就可以完成排序。

快速排序的思想是:每趟排序时选出一个基准值(这里以首元素为基准值),然后将所有元素与该基准值比较,并按大小分成左右两堆,然后递归执行该过程,直到所有元素都完成排序。

public void Quick_sort(int[] arr, int left, int right) {

if(left >= right)

return ;


int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i < j) {

while(arr[j] >= temp && i < j)

j--;

while(arr[i] <= temp && i < j)

i++;

if(i < j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;


Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}

归并排序是建立在归并操作上的一种有效的排序算法,归并排序对序列的元素进行逐层折半分组,然后从最小分组开始比较排序,每两个小分组合并成一个大的分组,逐层进行,最终所有的元素都是有序的。

public void Mergesort(int[] arr,int left,int right) {

if(right - left > 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i <= right;i++) {

if(i <= (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i < L1 && j < L2) {

if(arr_1[i] <= arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j < L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i < L1;i++)

arr[k++] = arr_1[i];

}

}

归并排序这里我使用了left,right等变量,使其可以通用,并没有直接用数字表示那么明确,所以给出相关伪代码,便于理解。

Mergesort(arr[0...n-1])

//输入:一个可排序数组arr[0...n-1]

//输出:非降序排列的数组arr[0...n-1]

if n>1

arr[0...n/2-1] to arr_1[0...(n+1)/2-1]//确保arr_1中元素个数>=arr_2中元素个数

//对于总个数为奇数时,arr_1比arr_2中元素多一个;对于总个数为偶数时,没有影响

arr[n/2...n-1] to arr_2[0...n/2-1]

Mergesort(arr_1[0...(n+1)/2-1])

Mergesort(arr_2[0...n/2-1])

Merge(arr_1,arr_2,arr)

Merge(arr_1[0...p-1],arr_2[0...q-1],arr[0...p+q-1])

//输入:两个有序数组arr_1[0...p-1]和arr_2[0...q-1]

//输出:将arr_1与arr_2两数组合并到arr

int i<-0;j<-0;k<-0

while i

<p span="" do<="" j

if arr_1[i] <= arr_2[j]

arr[k] <- arr_1[i]

i<-i+1

else arr[k] <- arr_2[j];j<-j+1

k<-k+1

if i=p

arr_2[j...q-1] to arr[k...p+q-1]

else arr_1[i...p-1] to arr[k...p+q-1]

package test_1;

import java.util.Scanner;

public class Test01 {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int[] arr_1 = new int[10];

for(int i = 0 ; i < 10 ; i++)

arr_1[i] = sc.nextInt();

Sort demo_1 = new Sort();


//1~5一次只能运行一个,若多个同时运行,则只有第一个有效,后面几个是无效排序。因为第一个运行的已经将带排序数组排好序。


demo_1.Select_sort(arr_1);//-----------------------1


//demo_1.Bubble_sort(arr_1);//---------------------2


/* //---------------------3

demo_1.Quick_sort(arr_1, 0 , arr_1.length - 1);

System.out.print("经过快速排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/


//demo_1.Insert_sort(arr_1);//--------------------4


/* //--------------------5

demo_1.Mergesort(arr_1,0,arr_1.length - 1);

System.out.print("经过归并排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/

}

}

class Sort {

public void swap(int arr[],int a, int b) {

int t;

t = arr[a];

arr[a] = arr[b];

arr[b] = t;

}


public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i<10;i++) {

index = i;

for(int j = i + 1 ; j < 10 ; j++) {

if(arr[j] < arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("经过选择排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}


public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i < 9 ; i++) {

for(int j = 0 ; j < 10 - i - 1 ;j++) {

if(arr[j] > arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("经过冒泡排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}


public void Quick_sort(int[] arr, int left, int right) {

if(left >= right)

return ;


int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i < j) {

while(arr[j] >= temp && i < j)

j--;

while(arr[i] <= temp && i < j)

i++;

if(i < j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;


Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}


public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i < length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] >= arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] < arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j < count - 1; j++) {

if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("经过插入排序后:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i > index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}


public void Mergesort(int[] arr,int left,int right) {

if(right - left > 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i <= right;i++) {

if(i <= (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i < L1 && j < L2) {

if(arr_1[i] <= arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j < L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i < L1;i++)

arr[k++] = arr_1[i];

}

}

}

若有错误,麻烦指正,不胜感激。

2. 常见的几种排序算法总结

对于非科班生的我来说,算法似乎对我来说是个难点,查阅了一些资料,趁此来了解一下几种排序算法。
首先了解一下,什么是程序

关于排序算法通常我们所说的往往指的是内部排序算法,即数据记录在内存中进行排序。
排序算法大体可分为两种:
一种是比较排序,时间复杂度O(nlogn) ~ O(n^2),主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。
另一种是非比较排序,时间复杂度可以达到O(n),主要有:计数排序,基数排序,桶排序等

冒泡排序它重复地走访过要排序的元素,一次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。

选择排序类似于冒泡排序,只不过选择排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然后再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾,以此类推,直到所有元素均排序完毕。

插入排序比冒泡排序和选择排序更有效率,插入排序类似于生活中抓扑克牌来。
插入排序具体算法描述,以数组[3, 2, 4, 5, 1]为例。

前面三种排序算法只有教学价值,因为效率低,很少实际使用。归并排序(Merge sort)则是一种被广泛使用的排序方法。
它的基本思想是,将两个已经排序的数组合并,要比从头开始排序所有元素来得快。因此,可以将数组拆开,分成n个只有一个元素的数组,然后不断地两两合并,直到全部排序完成。
以对数组[3, 2, 4, 5, 1] 进行从小到大排序为例,步骤如下:

有了merge函数,就可以对任意数组排序了。基本方法是将数组不断地拆成两半,直到每一半只包含零个元素或一个元素为止,然后就用merge函数,将拆成两半的数组不断合并,直到合并成一整个排序完成的数组。

快速排序(quick sort)是公认最快的排序算法之一,有着广泛的应用。
快速排序算法步骤

参考:
常用排序算法总结(一)
阮一峰-算法总结

3. 排序算法概述

十大排序算法:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序、希尔排序、计数排序,基数排序,桶排序

稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定 :如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,前一个键排序的结果可以为后一个键排序所用。

算法的复杂度往往取决于数据的规模大小和数据本身分布性质。
时间复杂度 : 一个算法执行所耗费的时间。
空间复杂度 :对一个算法在运行过程中临时占用存储空间大小的量度。
常见复杂度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)

在各种不同算法中,若算法中语句执行次数(占用空间)为一个常数,则复杂度为O(1);
当一个算法的复杂度与以2为底的n的对数成正比时,可表示为O(log n);
当一个算法的复杂度与n成线性比例关系时,可表示为O (n),依次类推。

冒泡、选择、插入排序需要两个for循环,每次只关注一个元素,平均时间复杂度为
(一遍找元素O(n),一遍找位置O(n))
快速、归并、堆基于分治思想,log以2为底,平均时间复杂度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相关
而希尔排序依赖于所取增量序列的性质,但是到目前为止还没有一个最好的增量序列 。例如希尔增量序列时间复杂度为O(n²),而Hibbard增量序列的希尔排序的时间复杂度为 , 有人在大量的实验后得出结论;当n在某个特定的范围后希尔排序的最小时间复杂度大约为n^1.3。

从平均时间来看,快速排序是效率最高的:
快速排序中平均时间复杂度O(nlog n),这个公式中隐含的常数因子很小,比归并排序的O(nlog n)中的要小很多,所以大多数情况下,快速排序总是优于合并排序的。

而堆排序的平均时间复杂度也是O(nlog n),但是堆排序存在着重建堆的过程,它把根节点移除后,把最后的叶子结点拿上来后需要重建堆,但是,拿上的值是要比它的两个叶子结点要差很多的,一般要比较很多次,才能回到合适的位置。堆排序就会有很多的时间耗在堆调整上。

虽然快速排序的最坏情况为排序规模(n)的平方关系,但是这种最坏情况取决于每次选择的基准, 对于这种情况,已经提出了很多优化的方法,比如三取样划分和Dual-Pivot快排。
同时,当排序规模较小时,划分的平衡性容易被打破,而且频繁的方法调用超过了O(nlog n)为
省出的时间,所以一般排序规模较小时,会改用插入排序或者其他排序算法。

一种简单的排序算法。它反复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。这个工作重复地进行直到没有元素再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为元素会经由交换慢慢“浮”到数列的顶端。
1.从数组头开始,比较相邻的元素。如果第一个比第二个大(小),就交换它们两个;
2.对每一对相邻元素作同样的工作,从开始第一对到尾部的最后一对,这样在最后的元素应该会是最大(小)的数;
3.重复步骤1~2,重复次数等于数组的长度,直到排序完成。

首先,找到数组中最大(小)的那个元素;
其次,将它和数组的第一个元素交换位置(如果第一个元素就是最大(小)元素那么它就和自己交换);
再次,在剩下的元素中找到最大(小)的元素,将它与数组的第二个元素交换位置。如此往复,直到将整个数组排序。
这种方法叫做选择排序,因为它在不断地选择剩余元素之中的最大(小)者。

对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
为了给要插入的元素腾出空间,我们需要将插入位置之后的已排序元素在都向后移动一位。
插入排序所需的时间取决于输入中元素的初始顺序。例如,对一个很大且其中的元素已经有序(或接近有序)的数组进行排序将会比对随机顺序的数组或是逆序数组进行排序要快得多。
总的来说,插入排序对于部分有序的数组十分高效,也很适合小规模数组。

一种基于插入排序的快速的排序算法。简单插入排序对于大规模乱序数组很慢,因为元素只能一点一点地从数组的一端移动到另一端。例如,如果主键最小的元素正好在数组的尽头,要将它挪到正确的位置就需要N-1 次移动。
希尔排序为了加快速度简单地改进了插入排序,也称为缩小增量排序,同时该算法是突破O(n^2)的第一批算法之一。
希尔排序是把待排序数组按一定数量的分组,对每组使用直接插入排序算法排序;然后缩小数量继续分组排序,随着数量逐渐减少,每组包含的元素越来越多,当数量减至 1 时,整个数组恰被分成一组,排序便完成了。这个不断缩小的数量,就构成了一个增量序列。

在先前较大的增量下每个子序列的规模都不大,用直接插入排序效率都较高,尽管在随后的增量递减分组中子序列越来越大,由于整个序列的有序性也越来越明显,则排序效率依然较高。
从理论上说,只要一个数组是递减的,并且最后一个值是1,都可以作为增量序列使用。有没有一个步长序列,使得排序过程中所需的比较和移动次数相对较少,并且无论待排序列记录数有多少,算法的时间复杂度都能渐近最佳呢?但是目前从数学上来说,无法证明某个序列是“最好的”。
常用的增量序列
希尔增量序列 :{N/2, (N / 2)/2, ..., 1},其中N为原始数组的长度,这是最常用的序列,但却不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表达式为

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。
对于给定的一组数据,利用递归与分治技术将数据序列划分成为越来越小的半子表,在对半子表排序后,再用递归方法将排好序的半子表合并成为越来越大的有序序列。
为了提升性能,有时我们在半子表的个数小于某个数(比如15)的情况下,对半子表的排序采用其他排序算法,比如插入排序。
若将两个有序表合并成一个有序表,称为2-路归并,与之对应的还有多路归并。

快速排序(Quicksort)是对冒泡排序的一种改进,也是采用分治法的一个典型的应用。
首先任意选取一个数据(比如数组的第一个数)作为关键数据,我们称为基准数(Pivot),然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序,也称为分区(partition)操作。
通过一趟快速排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数组变成有序序列。
为了提升性能,有时我们在分割后独立的两部分的个数小于某个数(比如15)的情况下,会采用其他排序算法,比如插入排序。

基准的选取:最优的情况是基准值刚好取在无序区数值的中位数,这样能够最大效率地让两边排序,同时最大地减少递归划分的次数,但是一般很难做到最优。基准的选取一般有三种方式,选取数组的第一个元素,选取数组的最后一个元素,以及选取第一个、最后一个以及中间的元素的中位数(如4 5 6 7, 第一个4, 最后一个7, 中间的为5, 这三个数的中位数为5, 所以选择5作为基准)。
Dual-Pivot快排:双基准快速排序算法,其实就是用两个基准数, 把整个数组分成三份来进行快速排序,在这种新的算法下面,比经典快排从实验来看节省了10%的时间。

许多应用程序都需要处理有序的元素,但不一定要求他们全部有序,或者不一定要一次就将他们排序,很多时候,我们每次只需要操作数据中的最大元素(最小元素),那么有一种基于二叉堆的数据结构可以提供支持。
所谓二叉堆,是一个完全二叉树的结构,同时满足堆的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。在一个二叉堆中,根节点总是最大(或者最小)节点。
堆排序算法就是抓住了这一特点,每次都取堆顶的元素,然后将剩余的元素重新调整为最大(最小)堆,依次类推,最终得到排序的序列。

推论1:对于位置为K的结点 左子结点=2 k+1 右子结点=2 (k+1)
验证:C:2 2 2+1=5 2 (2+1)=6
推论2:最后一个非叶节点的位置为 (N/2)-1,N为数组长度。
验证:数组长度为6,(6/2)-1=2

计数排序对一定范围内的整数排序时候的速度非常快,一般快于其他排序算法。但计数排序局限性比较大,只限于对整数进行排序,而且待排序元素值分布较连续、跨度小的情况。
计数排序是一个排序时不比较元素大小的排序算法。
如果一个数组里所有元素都是整数,而且都在0-K以内。对于数组里每个元素来说,如果能知道数组里有多少项小于或等于该元素,就能准确地给出该元素在排序后的数组的位置。

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,利用某种函数的映射关系将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序)。
桶排序利用函数的映射关系,减少了几乎所有的比较工作。实际上,桶排序的f(k)值的计算,其作用就相当于快排中划分,已经把大量数据分割成了基本有序的数据块(桶)。然后只需要对桶中的少量数据做排序即可。

常见的数据元素一般是由若干位组成的,比如字符串由若干字符组成,整数由若干位0~9数字组成。基数排序按照从右往左的顺序,依次将每一位都当做一次关键字,然后按照该关键字对数组排序,同时每一轮排序都基于上轮排序后的结果;当我们将所有的位排序后,整个数组就达到有序状态。基数排序不是基于比较的算法。
基数是什么意思?对于十进制整数,每一位都只可能是0~9中的某一个,总共10种可能。那10就是它的基,同理二进制数字的基为2;对于字符串,如果它使用的是8位的扩展ASCII字符集,那么它的基就是256。

基数排序 vs 计数排序 vs 桶排序

基数排序有两种方法:
MSD 从高位开始进行排序
LSD 从低位开始进行排序
这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
基数排序:根据键值的每位数字来分配桶
计数排序:每个桶只存储单一键值
桶排序:每个桶存储一定范围的数值

有时,待排序的文件很大,计算机内存不能容纳整个文件,这时候对文件就不能使用内部排序了(我们一般的排序都是在内存中做的,所以称之为内部排序,而外部排序是指待排序的内容不能在内存中一下子完成,它需要做内外存的内容交换),外部排序常采用的排序方法也是归并排序,这种归并方法由两个不同的阶段组成:
采用适当的内部排序方法对输入文件的每个片段进行排序,将排好序的片段(成为归并段)写到外部存储器中(通常由一个可用的磁盘作为临时缓冲区),这样临时缓冲区中的每个归并段的内容是有序的。
利用归并算法,归并第一阶段生成的归并段,直到只剩下一个归并段为止。

例如要对外存中4500个记录进行归并,而内存大小只能容纳750个记录,在第一阶段,我们可以每次读取750个记录进行排序,这样可以分六次读取,进行排序,可以得到六个有序的归并段
每个归并段的大小是750个记录,并将这些归并段全部写到临时缓冲区(由一个可用的磁盘充当)内了,这是第一步的排序结果。
完成第二步该怎么做呢?这时候归并算法就有用处了。

4. c语言插入法排序的算法步骤

算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
从第一个元素开始,该元素可以认为已经被排序
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置后
重复步骤2~5
如果比较操作的代价比交换操作大的话,可以采用二分查找法来减少比较操作的数目。该算法可以认为是插入排序的一个变种,称为二分查找排序。
范例程式码
void insertion_sort(int array[], int first, int last)
{
int i,j;
int temp;
for (i = first+1; i<=last;i++)
{
temp = array[i];
j=i-1;

while((j>=first) && (array[j] > temp))
{
array[j+1] = array[j];
j--;
}
array[j+1] = temp;
}
}

5. 八大经典排序算法原理及实现

该系列文章主要是记录下自己暑假这段时间的学习笔记,暑期也在实习,抽空学了很多,每个方面的知识我都会另起一篇博客去记录,每篇头部主要是另起博客的链接。

冒泡排序算法应该是大家第一个接触的算法,其原理都应该懂,但我还是想以自己的语言来叙述下其步奏:

按照计算时间复杂度的规则,去掉常数、去掉最高项系数,其复杂度为O(N^2)
冒泡排序及其复杂度分析

空间复杂度就是在交换元素时那个临时变量所占的内存

给定一个整数序列{6,1,2,3,4},每完成一次外层循环的结果为:

我们发现第一次外层循环之后就排序成功了,但是还是会继续循环下去,造成了不必要的时间复杂度,怎么优化?

冒泡排序都是相邻元素的比较,当相邻元素相等时并不会交换,因此冒泡排序算法是稳定性算法

插入排序是对冒泡排序的一种改进

插入排序的思想是数组是部分有序的,再将无序的部分插入有序的部分中去,如图:
(图片来自 这里 )

空间复杂度就是在交换元素时那个临时变量所占的内存

插入排序的优化,有两种方案:

文章后面会给出这两种排序算法

由于插入排序也是相邻元素的比较,遇到相等的相邻元素时不会发生交换,也不会造成相等元素之间的相对位置发生变化

其原理是从未排序的元素中选出最小值(最大值)放在已排序元素的后面

空间复杂度就是在交换元素时那个临时变量所占的内存

选择排序是不稳定的,比如 3 6 3 2 4,第一次外层循环中就会交换第一个元素3和第四个元素2,那么就会导致原序列的两个3的相对位置发生变化

希尔排序算是改良版的插入排序算法,所以也称为希尔插入排序算法

其原理是将序列分割成若干子序列(由相隔某个 增量 的元素组成的),分别进行直接插入排序;接着依次缩小增量继续进行排序,待整个序列基本有序时,再对全体元素进行插入排序,我们知道当序列基本有序时使用直接插入排序的效率很高。
上述描述只是其原理,真正的实现可以按下述步奏来:

希尔排序的效率取决于 增量值gap 的选取,这涉及到数学上尚未解决的难题,但是某些序列中复杂度可以为O(N 1.3),当然最好肯定是O(N),最坏是O(N 2)

空间复杂度就是在交换元素时那个临时变量所占的内存

希尔排序并不只是相邻元素的比较,有许多跳跃式的比较,难免会出现相同元素之间的相对位置发生变化,所以希尔排序是不稳定的

理解堆排序,就必须得先知道什么是堆?

二叉树的特点:

当父节点的值总是大于子结点时为 最大堆 ;反之为 最小堆 ,下图就为一个二叉堆

一般用数组来表示堆,下标为 i 的结点的父结点下标为(i-1)/2;其左右子结点分别为 (2 i + 1)、(2 i + 2)

怎么将给定的数组序列按照堆的性质,调整为堆?

这里以建立最小堆为示例,

很明显对于其叶子结点来说,已经是一个合法的子堆,所以做堆调整时,子节点没有必要进行,这里只需从结点为A[4] = 50的结点开始做堆调整,即从(n/2 - 1)位置处向上开始做堆调整:

由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN),二次操作时间相加还是O(N logN)。故堆排序的时间复杂度为O(N * logN)。

空间复杂度就是在交换元素时那个临时变量所占的内存

由于堆排序也是跨越式的交换数据,会导致相同元素之间的相对位置发生变化,则算法不稳定。比如 5 5 5 ,堆化数组后将堆顶元素5与堆尾元素5交换,使得第一个5和第三个5的相对位置发生变化

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

快速排序在应该是大家经常看到、听到的算法,但是真正默写出来是有难度的。希望大家看了下面 挖坑填数 方法后,能快速写出、快速排序。

其原理就这么几句话,但是现实起来并不是这么简单,我们采取流行的一种方式 挖坑填数分治法

对于序列: 72 6 57 88 60 42 83 73 48 85

数组变为: 48 6 57 88 60 42 83 73 88 85
再重复上面的步骤,先从后向前找,再从前向后找:

数组变为: 48 6 57 42 60 72 83 73 88 85
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了

空间复杂度,主要是递归造成的栈空间的使用:

快速排序的优化主要在于基准数的选取

快速排序也是跨越式比较及交换数据,易导致相同元素之间的相对位置发生变化,所以快速排序不稳定

前面也说了二分查找排序是改进的插入排序,不同之处在于,在有序区间查找新元素插入位置时,为了减少比较次数提高效率,采用二分查找算法进行插入位置的确定
具体步骤,设数组为a[0…n]:

二分查找插入位置,因为不是查找相等值,而是基于比较查插入合适的位置,所以必须查到最后一个元素才知道插入位置。
二分查找最坏时间复杂度:当2^X>=n时,查询结束,所以查询的次数就为x,而x等于log2n(以2为底,n的对数)。即O(log2n)
所以,二分查找排序比较次数为:x=log2n
二分查找插入排序耗时的操作有:比较 + 后移赋值。时间复杂度如下:

二分查找排序在交换数据时时进行移动,当遇到有相等值插入时也只会插入其后面,不会影响其相等元素之间的相对位置,所以是稳定的

白话经典算法排序
冒泡排序选择排序
快速排序复杂度分析
优化的插入排序

6. php几种排序算法实例详解

四种排序算法的PHP实现:
1)插入排序(InsertionSort)的基本思想是:
每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。

2)选择排序(SelectionSort)的基本思想是:
每一趟从待排序的记录中选出关键字最小的记录,顺序放在已排好序的子文件的最后,直到全部记录排序完毕。

3)冒泡排序的基本思想是:
两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。

4)快速排序实质上和冒泡排序一样,都是属于交换排序的一种应用。所以基本思想和上面的冒泡排序是一样的。

1.sort.php文件如下:

<?php
classSort{
private$arr=array();
private$sort='insert';
private$marker='_sort';
private$debug=TRUE;
/**
*构造函数
*
*@paramarray例如:
$config=array(
'arr'=>array(22,3,41,18),//需要排序的数组值
'sort'=>'insert',//可能值:insert,select,bubble,quick
'debug'=>TRUE//可能值:TRUE,FALSE
)
*/
publicfunctionconstruct($config=array()){
if(count($config)>0){
$this->_init($config);
}
}
/**
*获取排序结果
*/
publicfunctiondisplay(){
return$this->arr;
}
/**
*初始化
*
*@paramarray
*@returnbool
*/
privatefunction_init($config=array()){
//参数判断
if(!is_array($config)ORcount($config)==0){
if($this->debug===TRUE){
$this->_log("sort_init_param_invaild");
}
returnFALSE;
}
//初始化成员变量
foreach($configas$key=>$val){
if(isset($this->$key)){
$this->$key=$val;
}
}
//调用相应的成员方法完成排序
$method=$this->sort.$this->marker;
if(!method_exists($this,$method)){
if($this->debug===TRUE){
$this->_log("sort_method_invaild");
}
returnFALSE;
}
if(FALSE===($this->arr=$this->$method($this->arr)))
returnFALSE;
returnTRUE;
}
/**
*插入排序
*
*@paramarray
*@returnbool
*/
privatefunctioninsert_sort($arr){
//参数判断
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(insert)_invaild");
}
returnFALSE;
}
//具体实现
$count=count($arr);
for($i=1;$i<$count;$i++){
$tmp=$arr[$i];
for($j=$i-1;$j>=0;$j--){
if($arr[$j]>$tmp){
$arr[$j+1]=$arr[$j];
$arr[$j]=$tmp;
}
}
}
return$arr;
}
/**
*选择排序
*
*@paramarray
*@returnbool
*/
privatefunctionselect_sort($arr){
//参数判断
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(select)_invaild");
}
returnFALSE;
}
//具体实现
$count=count($arr);
for($i=0;$i<$count-1;$i++){
$min=$i;
for($j=$i+1;$j<$count;$j++){
if($arr[$min]>$arr[$j])$min=$j;
}
if($min!=$i){
$tmp=$arr[$min];
$arr[$min]=$arr[$i];
$arr[$i]=$tmp;
}
}
return$arr;
}
/**
*冒泡排序
*
*@paramarray
*@returnbool
*/
privatefunctionbubble_sort($arr){
//参数判断
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(bubble)_invaild");
}
returnFALSE;
}
//具体实现
$count=count($arr);
for($i=0;$i<$count;$i++){
for($j=$count-1;$j>$i;$j--){
if($arr[$j]<$arr[$j-1]){
$tmp=$arr[$j];
$arr[$j]=$arr[$j-1];
$arr[$j-1]=$tmp;
}
}
}
return$arr;
}
/**
*快速排序
*@bywww.5wx.org
*@paramarray
*@returnbool
*/
privatefunctionquick_sort($arr){
//具体实现
if(count($arr)<=1)return$arr;
$key=$arr[0];
$left_arr=array();
$right_arr=array();
for($i=1;$i<count($arr);$i++){
if($arr[$i]<=$key)
$left_arr[]=$arr[$i];
else
$right_arr[]=$arr[$i];
}
$left_arr=$this->quick_sort($left_arr);
$right_arr=$this->quick_sort($right_arr);

returnarray_merge($left_arr,array($key),$right_arr);
}
/**
*日志记录
*/
privatefunction_log($msg){
$msg='date['.date('Y-m-dH:i:s').']'.$msg.' ';
return@file_put_contents('sort_err.log',$msg,FILE_APPEND);
}
}
/*Endoffilesort.php*/
/*Locationhtdocs/sort.php*/
2.sort_demo.php文件如下:

<?php
require_once('sort.php');
$config=array(
'arr'=>array(23,22,41,18,20,12,200303,2200,1192),
//需要排序的数组值
'sort'=>'select',
//可能值:insert,select,bubble,quick
'debug'=>TRUE
//可能值:TRUE,FALSE
);
$sort=newSort($config);
//var_mp($config['arr']);
var_mp($sort->display());
/*Endofphp*/

阅读全文

与插入排序运用了什么算法设计技术相关的资料

热点内容
安卓快手下载怎么没有下载到本地 浏览:228
怎么在安卓手机登绘旅人 浏览:404
桌面文件全部加密 浏览:401
6s怎么外接u盘需要什么app 浏览:131
linux查看文件权限命令 浏览:685
安卓手游存档怎么用 浏览:761
linuxyum安装ftp 浏览:690
村委会主任可以推行政命令吗 浏览:102
电脑文件夹封面多张图片 浏览:263
网吧总服务器叫什么 浏览:922
多个算法解决同一个问题 浏览:455
小车解压后我的购车发票呢 浏览:977
做app开发用什么云服务器 浏览:177
linux网卡子接口 浏览:985
21岁职高毕业学程序员怎么学 浏览:321
vs如何对单个文件编译 浏览:6
为什么有的电脑不能安装python 浏览:75
金蝶迷你版加密狗检测到过期 浏览:186
硬件描述语言编译结果 浏览:655
程序员逆天改命 浏览:19