A. 求解一道贪心算法
因为这个问题涉及到高维求解(大于3维),所以不推荐你用贪心算法或遗传算法之类的算法。这里给出一种升级的蒙特卡罗算法——自适应序贯数论算法,这是一种以GLP集合为基础的随机遍历算法,可以很轻易的解决一系列的高维求解问题,目前根据网上能找到的资料最多可以做到18维。
下面就根据你给出的例子讲解一下:
对于6000的料来说
1185最多做到5根(要求4根,所以一根木料对于1185的产品来说最多有0到45种可能);1079最多做到5根;985最多做到6根;756最多做到7根。
所以第一次加工一根木料最多有5*6*7*8=1680种加工可能(当然其中包括那些产品总长度大于料长的可能,但是我们可以通过罚函数来避免这些情况),那么利用GLP算法我们可以一次性产生这1680种可能,然后逐个比较那种可能最省木料;
设第一加工出的产品量分别为1 1 3 1
那么1185加工量剩3,1079剩5,985剩7,756剩7,所以第二次加工的可能性有(3+1)*(5+1)*(6+1)*(7+1)=1120种
关于自适应序贯数论算法,根据这道题你可以这样理解,4种尺寸构成了一个4维的空间,四种尺寸的每一种组合相当于空间中的一个点(1185的1根,1079的1根,985的3根,756的1根,这就组成了这个4维空间中的(1,1,3,1)点) ,自适应序贯数论算法就是先根据GLP算法在这个4维空间中随机的,均匀的分布一定的点(也就是尺寸的组合),然后根据目标函数确定其中哪一个点是最优点,我们认为最优点的附近出现最优解的可能性最大,那么我们就以最优点为中心,以一定的尺度为半径将原空间缩小,然后我们在心空间中再一次利用GLP算法均匀,随机的充满这个空间,然后重复以上过程,直到这个空间小到我们事先规定的大小,这样我们就找到了最优解。
也许你会担心算法一上来就收敛到了局部最优解,然后一直在这里打转,不用担心,GLP最大的优点就是均匀的充斥整个空间,尽量将每一种可能都遍历到。
这种算法的缺点在于充斥空间用的点需要生成向量来生成,每一种充斥方式都需要不同的向量,你可以在《数论方法在统计中的应用》这本书中查到已有的每种充斥方式对应的那些生成向量。
下面是我跟据对你给出的例子的理解算出的结果。
1185:1根
1079:1根
985:3根
756:1根
剩余木料0
1185:1根
1079:1根
985:3根
756:1根
剩余木料0
1185:1根
1079:1根
985:3根
756:1根
剩余木料0
1185:1根
1079:0根
985:1根
756:5根
剩余木料15
1185:0根
1079:3根
985:0根
756:0根
剩余木料2748
用去木料:5根
请按任意键继续. . .
程序代码如下:(变量都是用汉语拼音标的)
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <iostream.h>
#include <iomanip.h>
#include <time.h>
#include <fstream.h>
#include <windows.h>
#include "glp.h"
#define jiedeweishu 4
#define glpgeshu 10007
#define glpgeshu1 5003//100063
#define glpgeshu2 6007//33139//71053//172155//100063
#define yuanmuchang 6000
#define qiegesushi 5
#define chicun1 1185
#define chicun2 1079
#define chicun3 985
#define chicun4 756
#define chicun1shuliang 4
#define chicun2shuliang 6
#define chicun3shuliang 10
#define chicun4shuliang 8
float xuqiuchicun[jiedeweishu]={chicun1,chicun2,chicun3,chicun4};
float chicunxuqiuliang[jiedeweishu]={chicun1shuliang,chicun2shuliang,chicun3shuliang,chicun4shuliang};
float zuobianjie0[jiedeweishu];//{-19,1,-11,1.5,0,200};//{0.39111,-18.5,1,-11,1,0,2};//左边界
float youbianjie0[jiedeweishu];//{-17,1.5,-7,2,0.05,900};//{0.393,-17,2,-9,2,0.1,6};//右边界
float zuobianjie[jiedeweishu];
float youbianjie[jiedeweishu];
float zuobianjie1[jiedeweishu];//过度用
float youbianjie1[jiedeweishu];
float zuobianjie2[jiedeweishu];//局部边界
float youbianjie2[jiedeweishu];
float zuobianjie3[jiedeweishu];//大边界
float youbianjie3[jiedeweishu];
float sheng_cheng_xiang_liang[jiedeweishu]={1,1206,3421,2842};//生成向量
float sheng_cheng_xiang_liang1[jiedeweishu]={1,792,1889,191};//{1,39040,62047,89839,6347,30892,64404};//生成向量
float sheng_cheng_xiang_liang2[jiedeweishu]={1,1351,5080,3086};//{1,18236,1831,19143,5522,22910};//{1,18010,3155,50203,6065,13328};//{1,167459,153499,130657,99554,61040,18165};
struct chushi
{
float geti[jiedeweishu];
float shiying;
};
chushi *zuiyougeti;//精英保存策略
chushi *zuiyougetijicunqi;
int sishewuru(float);
float cha;//左右边界的差
int biao;//判断寻优是否成功1表示成功0表示不成功
int maxgen;//最大计算代数
int gen;//目前代数
void initialize();//算法初始化
void jingyingbaoliu();//精英保存的实现
void mubiaohanshu1(chushi &bianliang);//适应度的计算使用残差法
int cmpshiyingjiang(const void *p1,const void *p2)
{
float i=((chushi *)p1)->shiying;
float j=((chushi *)p2)->shiying;
return i<j ? 1:(i==j ? 0:-1);//现在是按降序牌排列,将1和-1互换后就是按升序排列
}
int cmp1(const void *p1,const void *p2)
{
float i= *(float*)p1;
float j= *(float*)p2;
return i<j ? 1:(i==j ? 0:-1);//现在是按降序牌排列,将1和-1互换后就是按升序排列
}
void main()
{
float bianjiebianhuashuzu[jiedeweishu];
float yiwanchengshuliang[jiedeweishu];
zuiyougeti=new chushi;//最优个体的生成
zuiyougetijicunqi=new chushi;
int i;
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=0;
yiwanchengshuliang[i]=0;
}
int muliaoshuliang=0;
while(1)
{
if(yiwanchengshuliang[0]==chicun1shuliang&&yiwanchengshuliang[1]==chicun2shuliang&&yiwanchengshuliang[2]==chicun3shuliang&&yiwanchengshuliang[3]==chicun4shuliang)
break;//都加工完了就退出程序
biao=1;
for(i=0;i<jiedeweishu;i++)
{
bianjiebianhuashuzu[i]=chicunxuqiuliang[i]-yiwanchengshuliang[i];
}
for(i=0;i<jiedeweishu;i++)
{
zuobianjie0[i]=0;
if(bianjiebianhuashuzu[i]>(int)(yuanmuchang/xuqiuchicun[i]))
{
youbianjie0[i]=(int)(yuanmuchang/xuqiuchicun[i]);
}
else
{
youbianjie0[i]=bianjiebianhuashuzu[i];
}
}
for(i=0;i<jiedeweishu;i++)
{
zuobianjie[i]=zuobianjie0[i];
youbianjie[i]=youbianjie0[i];
}
for(i=0;i<jiedeweishu;i++)//在这套程序中边界分为两个部分,其中一组是根据最优解的收敛范围进行局部寻优,如果在局部找不到最优解则以现有最优解为中心进行全局搜索
{
zuobianjie2[i]=zuobianjie[i];
youbianjie2[i]=youbianjie[i];
zuobianjie3[i]=zuobianjie[i];
youbianjie3[i]=youbianjie[i];
}
zuiyougeti->shiying=-3000;
//cout<< zuiyougeti->shiying<<endl;
initialize();
//for(i=0;i<jiedeweishu;i++)/////
//{////
// cout<<zuiyougeti->geti[i]<<",";////
//}/////////
//cout<<endl;/////
// cout<<"初始最优解:"<<" "<<-zuiyougeti->shiying<<endl;/////////////
for(gen=1;gen<maxgen;gen++)
{
jingyingbaoliu();
if(cha<1e-1)
break;
}
//cout<<"最终在收敛的范围内左右边界的最大差值: "<<cha<<endl;
//for(i=0;i<jiedeweishu;i++)
//{
// cout<<setiosflags(ios::fixed)<<setprecision(6)<<zuiyougeti->geti[i]<<",";
// }
//cout<<endl;
//cout<<"共用代数"<<gen<<endl;
cout<<"1185:"<<zuiyougeti->geti[0]<<"根"<<endl;
cout<<"1079:"<<zuiyougeti->geti[1]<<"根"<<endl;
cout<<"985:"<<zuiyougeti->geti[2]<<"根"<<endl;
cout<<"756:"<<zuiyougeti->geti[3]<<"根"<<endl;
cout<<"剩余木料"<<(-zuiyougeti->shiying)<<endl;////////////////
cout<<endl;
for(i=0;i<jiedeweishu;i++)
{
yiwanchengshuliang[i]=yiwanchengshuliang[i]+zuiyougeti->geti[i];
}
muliaoshuliang++;
}
cout<<"用去木料:"<<muliaoshuliang<<"根"<<endl;
delete [] zuiyougetijicunqi;
delete [] zuiyougeti;
system("pause");
}
void initialize()
{
maxgen=20;//最大代数
gen=0;//起始代
cha=100;
chushi *chushizhongqunji;
chushizhongqunji=new chushi[glpgeshu];
int i,j;
for(i=0;i<jiedeweishu;i++)
{
zuobianjie1[i]=zuobianjie[i];
youbianjie1[i]=youbianjie[i];
}
float **glp_shu_zu;//第一次求解,为了使解更精确这一次求解需要的点最多
glp_shu_zu=new (float *[glpgeshu]);
for(i=0;i<glpgeshu;i++)
{
glp_shu_zu[i]=new float[jiedeweishu];//生成的glp向量用glp_shu_zu储存
}
glp glp_qiu_jie_first(glpgeshu,jiedeweishu);//定义生成多少组glp向量和向量的维数
glp_qiu_jie_first.glp_qiu_jie(glp_shu_zu,sheng_cheng_xiang_liang);//将生成的glp向量用glp_shu_zu储存,同时将生成向量带入glp类
for(i=0;i<glpgeshu;i++)//产生初始种群
{
for(j=0;j<jiedeweishu;j++)
{
chushizhongqunji[i].geti[j]=sishewuru((zuobianjie[j]+(youbianjie[j]-(zuobianjie[j]))*glp_shu_zu[i][j]));
if(j==3&&glp_shu_zu[i][j]<0)
{
cout<<"274"<<endl;/////////////
cout<<zuobianjie[j]<<" "<<glp_shu_zu[i][j]<<" "<<youbianjie[j]<<endl;////////////////////
system("pause");///////////////////
}
}
}
for(i=0;i<glpgeshu;i++)//计算初始种群的适应度
{
mubiaohanshu1(chushizhongqunji[i]);
}
qsort(chushizhongqunji,glpgeshu,sizeof(chushi),&cmpshiyingjiang);//根据适应度将初始种群集按降序进行排列
chushi *youxiugetiku;//建立一个储存优秀个体的库
youxiugetiku=new chushi[glpgeshu];//建立一个储存优秀个体的库
int jishuqi=0;
i=0;
while(chushizhongqunji[i].shiying>zuiyougeti->shiying)//凡是比上一代的最优个体还要好的个体都放入优秀个体库
{
for(int j=0;j<jiedeweishu;j++)
{
youxiugetiku[i].geti[j]=chushizhongqunji[i].geti[j];
//cout<<youxiugetiku[i].geti[j]<<endl;
}
//system("pause");
i++;
}
// cout<<i<<endl;//////////////
//system("pause");//////////////////////////////////////
jishuqi=i;//将得到的优秀个体的数量放入jishuqi保存
float *bianjiezancunqi;//下面就要以优秀个体库中个体的范围在成立一个局部搜索区域,所以先建立一个边界暂存器
bianjiezancunqi=new float[jishuqi];
for(i=0;i<jiedeweishu;i++)
{
for(int j=0;j<jishuqi;j++)
{
bianjiezancunqi[j]=youxiugetiku[j].geti[i];//将优秀个体库每一维的数据都放入bianjiezancunqi
}
qsort(bianjiezancunqi,jishuqi,sizeof(float),&cmp1);//对这些数据按降序排列,取两个边界又得到一个局部范围
//将得到的范围进行保存
zuobianjie[i]=bianjiezancunqi[jishuqi-1];
youbianjie[i]=bianjiezancunqi[0];
//cout<<zuobianjie[i]<<endl;//////////////////////////
// cout<<youbianjie[i]<<endl;///////////////////////////
//cout<<endl;///////////////////
//
if(zuobianjie[i]<zuobianjie2[i])//如果新得到的局部左边界在上一代局部左边界左边,则左边界取上一代的
{
zuobianjie[i]=zuobianjie2[i];
}
if(youbianjie[i]>youbianjie2[i])//如果新得到的局部右边界在上一代局部右边界右边,则右边界取上一代的
{
youbianjie[i]=youbianjie2[i];
}
}
if(chushizhongqunji[0].shiying>zuiyougeti->shiying)//本代种群的最优个体比历史最有个个体好,则用本代的代替之,并将标志位赋值为1表示寻优成功
{
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=chushizhongqunji[0].geti[i];
}
zuiyougeti->shiying=chushizhongqunji[0].shiying;
biao=1;
}
delete [] bianjiezancunqi;
delete [] youxiugetiku;
for(i=0;i<glpgeshu;i++)
{
delete [] glp_shu_zu[i];
}
delete [] glp_shu_zu;
delete [] chushizhongqunji;
}
void jingyingbaoliu() //精英保留的实现
{
float glpshuliang,xiangliang[jiedeweishu];
if(biao==1)//如果寻优成功则利用局部搜索的数据
{
glpshuliang=glpgeshu1;
for(int i=0;i<jiedeweishu;i++)
{
xiangliang[i]=sheng_cheng_xiang_liang1[i];
}
}
else//否则利用全局搜索的数据
{
glpshuliang=glpgeshu2;
for(int i=0;i<jiedeweishu;i++)
{
xiangliang[i]=sheng_cheng_xiang_liang2[i];
}
}
chushi *chushizhongqunji;//建立一个用来储存种群的容器
chushizhongqunji=new chushi[glpshuliang];
int i,j;
float **glp_shu_zu;//生成一个glp数组
glp_shu_zu=new (float *[glpshuliang]);
for(i=0;i<glpshuliang;i++)
{
glp_shu_zu[i]=new float[jiedeweishu];//生成的glp向量用glp_shu_zu储存
}
glp glp_qiu_jie_first(glpshuliang,jiedeweishu);//定义生成多少组glp向量和向量的维数
glp_qiu_jie_first.glp_qiu_jie(glp_shu_zu,xiangliang);//将生成的glp向量用glp_shu_zu储存,同时将生成向量带入glp类
//cout<<"377"<<endl;
if(biao!=1)//如果寻优不成功则进入全局搜索
{
//cout<<"380"<<endl;////////////
float bianjiecha[jiedeweishu];
for(i=0;i<jiedeweishu;i++)
{
bianjiecha[i]=youbianjie3[i]-zuobianjie3[i];//计算上一代全局每一维范围的宽度
}
static float rou=0.9;//定义收缩比
//float rou=pow(0.5,gen);
for(i=0;i<jiedeweishu;i++)//确定新的范围
{
zuobianjie1[i]=zuiyougeti->geti[i]-rou*bianjiecha[i];//左边界为以最优个体为中心-范围宽度乘以收缩比
if(zuobianjie1[i]>zuobianjie2[i])//如果新的左边界比目前局部左边界大,那么以目前的为全局寻优的左边界
{
zuobianjie[i]=zuobianjie1[i];
zuobianjie3[i]=zuobianjie1[i];
}
else//否则以局部左边界为全局左边界
{
zuobianjie[i]=zuobianjie2[i];
zuobianjie3[i]=zuobianjie2[i];
}
youbianjie1[i]=zuiyougeti->geti[i]+rou*bianjiecha[i];//右边界为以最优个体为中心+范围宽度乘以收缩比
if(youbianjie1[i]<youbianjie2[i])
{
youbianjie[i]=youbianjie1[i];
youbianjie3[i]=youbianjie1[i];
}
else
{
youbianjie[i]=youbianjie2[i];
youbianjie3[i]=youbianjie2[i];
}
}
qsort(bianjiecha,jiedeweishu,sizeof(float),&cmp1);
if(cha==bianjiecha[0])//如果最大边界差不变的话就将收缩因子变小
{
rou=pow(rou,2);
}
cha=bianjiecha[0];
}
//cout<<"421"<<endl;/////////////////////
for(i=0;i<glpshuliang;i++)//根据新产生的最优个体确定glp群
{
for(j=0;j<jiedeweishu;j++)
{
chushizhongqunji[i].geti[j]=sishewuru((zuobianjie[j]+(youbianjie[j]-(zuobianjie[j]))*glp_shu_zu[i][j]));
}
}
for(i=0;i<glpshuliang;i++)
{
mubiaohanshu1(chushizhongqunji[i]);
}
qsort(chushizhongqunji,glpshuliang,sizeof(chushi),&cmpshiyingjiang);
zuiyougetijicunqi->shiying=zuiyougeti->shiying;
if(chushizhongqunji[0].shiying>zuiyougeti->shiying)
{
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=chushizhongqunji[0].geti[i];
}
zuiyougeti->shiying=chushizhongqunji[0].shiying;
biao=1;
}
else
{
// cout<<"446"<<endl;/////////////
biao=0;
}
if(biao==1)//如果寻优成功了就需要确立一个新的局部最优解范围
{
chushi *youxiugetiku;
youxiugetiku=new chushi[glpshuliang];
int jishuqi=0;
i=0;
while(chushizhongqunji[i].shiying>zuiyougetijicunqi->shiying)
{
for(int j=0;j<jiedeweishu;j++)
{
youxiugetiku[i].geti[j]=chushizhongqunji[i].geti[j];
}
i++;
}
jishuqi=i;
float *bianjiezancunqi;
bianjiezancunqi=new float[jishuqi];
for(i=0;i<jiedeweishu;i++)
{
for(int j=0;j<jishuqi;j++)
{
bianjiezancunqi[j]=youxiugetiku[j].geti[i];
}
qsort(bianjiezancunqi,jishuqi,sizeof(float),&cmp1);
zuobianjie[i]=bianjiezancunqi[jishuqi-1];
youbianjie[i]=bianjiezancunqi[0];
// cout<<zuobianjie[i]<<endl;//////////////
// cout<<youbianjie[i]<<endl;/////////////
// cout<<endl;///////////////
if(zuobianjie[i]<zuobianjie2[i])
{
zuobianjie[i]=zuobianjie2[i];
}
if(youbianjie[i]>youbianjie2[i])
{
youbianjie[i]=youbianjie2[i];
}
}
delete [] bianjiezancunqi;
delete [] youxiugetiku;
}
for(i=0;i<glpshuliang;i++)
{
delete [] glp_shu_zu[i];
}
delete [] glp_shu_zu;
delete [] chushizhongqunji;
}
void mubiaohanshu1(chushi &bianliang)//计算shiying
{
int i=0;
int sunshi,chanpin;
sunshi=qiegesushi*(bianliang.geti[0]+bianliang.geti[1]+bianliang.geti[2]+bianliang.geti[3]-1);
chanpin=chicun1*bianliang.geti[0]+chicun2*bianliang.geti[1]+chicun3*bianliang.geti[2]+chicun4*bianliang.geti[3];
bianliang.shiying=yuanmuchang-sunshi-chanpin;
if(bianliang.shiying!=0)//如果不能正好将木料分成所需尺寸则要多切一刀
{
sunshi=qiegesushi*(bianliang.geti[0]+bianliang.geti[1]+bianliang.geti[2]+bianliang.geti[3]);
}
if(bianliang.shiying<0)//罚函数
{
bianliang.shiying=bianliang.shiying+1e5;
}
bianliang.shiying=-bianliang.shiying;
}
int sishewuru(float x)
{
float y;
int z;
y=x-(int)x;
if(y<0.5)
{
z=(int)(x);
}
else
{
z=(int)x;
z=z+1;
}
return z;
}
glp.h源文件贴不下了,把你邮箱给我我发给你
邮箱:[email protected]
B. 学习C语言需要掌握哪些基本知识
1.入门程序
#include <stdio.h>
int main()
{
printf("Hello World!");
return 0;
}
2.数据类型
数据类型:
1.基本数据类型:
1.1. 整型:int 4个字节
1.2. 字符型:char 1个字节
1.3. 实型(浮点型)
1.3.1.单精度型:float 4个字节
1.3.2.双精度型:double 8个字节
2.构造类型:
2.1.枚举类型
2.2.数组类型
2.3.结构体类型
2.4.共用体类型
3.指针类型:
4.空类型:
3.格式化输出语句
%d:十进制整数;
%c:单个字符;
%s:字符串;
%f:6位小数;
学好C++才是入职大厂的敲门砖! 当年要是有这课,我的C++也不至于这样
已失效
4.常量
值不发生改变的量成为常量;
定义字符常量(注意后面没有;)
5.运算符
5.1.算数运算符:+,-,*,/,%,++,--;前++/--,先运算,再取值.后++/--,先取值,再运算;
5.2.赋值运算符:
5.3.关系运算符;
5.4.逻辑运算符;
5.5.三目运算符:
表达式1 ? 表达式2 : 表达式3;
6.水仙花数计算
输出所有三位数的水仙花数字
所谓“水仙花数”是指一个三位数,其各位数字立方和等于该数,如:153就是一个水仙花数,153=111+555+333。
7.打印正三角形的*
8.臭名远扬的goto语句
很少使用
9.形参与实参
形参:形参是在定义函数名和函数体的时候使用的参数,目的是用来接收调用该函数时传入的参数;
实参:实参是在调用时传递该函数的参数。
函数的形参和实参具有以下特点:
形参只有在被调用时才分配内存单元,在调用结束时,即刻释放所分配的内存单元。因此,形参只有在函数内部有效。函数调用结束返回主调函数后则不能再使用该形参变量。
实参可以是常量、变量、表达式、函数等,无论实参是何种类型的量,在进行函数调用时,它们都必须具有确定的值,以便把这些值传送给形参。因此应预先用赋值等办法使实参获得确定值。
在参数传递时,实参和形参在数量上,类型上,顺序上应严格一致,否则会发生类型不匹配”的错误。
10.函数返回值注意
注意:void函数中可以有执行代码块,但是不能有返回值,另void函数中如果有return语句,该语句只能起到结束函数运行的功能。其格式为:return;
11.递归
12.变量存储类别 !
12.1.生存周期划分存储方式
C语言根据变量的生存周期来划分,可以分为静态存储方式和动态存储方式。
静态存储方式:是指在程序运行期间分配固定的存储空间的方式。静态存储区中存放了在整个程序执行过程中都存在的变量,如全局变量。
动态存储方式:是指在程序运行期间根据需要进行动态的分配存储空间的方式。动态存储区中存放的变量是根据程序运行的需要而建立和释放的,通常包括:函数形式参数;自动变量;函数调用时的现场保护和返回地址等。
12.2.存储类型划分
C语言中存储类别又分为四类:自动(auto)、静态(static)、寄存器的(register)和外部的(extern) ;
用关键字auto定义的变量为自动变量,auto可以省略,auto不写则隐含定为“自动存储类别”,属于动态存储方式。
用static修饰的为静态变量,如果定义在函数内部的,称之为静态局部变量;如果定义在函数外部,称之为静态外部变量。
注意:静态局部变量属于静态存储类别,在静态存储区内分配存储单元,在程序整个运行期间都不释放;静态局部变量在编译时赋初值,即只赋初值一次;如果在定义局部变量时不赋初值的话,则对静态局部变量来说,编译时自动赋初值0(对数值型变量)或空字符(对字符变量)
为了提高效率,C语言允许将局部变量的值放在CPU中的寄存器中,这种变量叫“寄存器变量”,用关键字register作声明。
注意:只有局部自动变量和形式参数可以作为寄存器变量;一个计算机系统中的寄存器数目有限,不能定义任意多个寄存器变量;局部静态变量不能定义为寄存器变量。
用extern声明的的变量是外部变量,外部变量的意义是某函数可以调用在该函数之后定义的变量。
13.内部函数外部函数 !
在C语言中不能被其他源文件调用的函数称为内部函数 ,内部函数由static关键字来定义,因此又被称为静态函数,形式为:
static [数据类型] 函数名([参数])
这里的static是对函数的作用范围的一个限定,限定该函数只能在其所处的源文件中使用,因此在不同文件中出现相同的函数名称的内部函数是没有问题的。
在C语言中能被其他源文件调用的函数称为外部函数 ,外部函数由extern关键字来定义,形式为:
extern [数据类型] 函数名([参数])
C语言规定,在没有指定函数的作用范围时,系统会默认认为是外部函数,因此当需要定义外部函数时extern也可以省略。 extern可以省略; 14.数组 数组:一块连续的,大小固定并且里面的数据类型一致的内存空间, 数组的声明:数据类型 数组名称[长度n]
数据类型 数组名称[长度n] = {元素1,元素2,元素3,......};
数据类型 数组名称[] = {元素1,元素2,元素3,......};
数类类型 数组名称[长度n]; 数组名称[0] = 元素1;数组名称[1] = 元素2;...... 注意: 1、数组的下标均以0开始; 2、数组在初始化的时候,数组内元素的个数不能大于声明的数组长度; 3、如果采用第一种初始化方式,元素个数小于数组的长度时,多余的数组元素初始化为0; 4、在声明数组后没有进行初始化的时候,静态(static)和外部(extern)类型的数组元素初始化元素为0,自动(auto)类型的数组的元素初始化值不确定。
15.数组遍历
数组的冒泡排序
冒泡排序的思想:相邻元素两两比较,将较大的数字放在后面,直到将所有数字全部排序。
字符串与数组
在C语言中,是没有办法直接定义子字符串数据类型的,需使用数组来定义所要的字符串,形式如下:
char 字符串名称[长度] = "字符串内容";
char 字符串名称[长度] = {'字符串1','字符串2',....,'字符串n','