❶ 贪心算法的例题分析
例题1、
[0-1背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目标函数:∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
⑵每次挑选所占重量最小的物品装入是否能得到最优解?
⑶每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
⑴贪心策略:选取价值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
⑶贪心策略:选取单位重量价值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
但是,如果题目是如下所示,这个策略就也不行了。
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
附:本题是个DP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。
例题2、
马踏棋盘的贪心算法
123041-23 XX
【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
【初步设计】
首先这是一个搜索问题,运用深度优先搜索进行求解。算法如下:
⒈ 输入初始位置坐标x,y;
⒉ 步骤 c:
如果c> 64输出一个解,返回上一步骤c--
(x,y) ← c
计算(x,y)的八个方位的子结点,选出那些可行的子结点
循环遍历所有可行子结点,步骤c++重复2
显然⑵是一个递归调用的过程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//输出一个解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八个方位子结点ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//递归调用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8个方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{确定新坐标是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判断是否走过}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐标}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{递归}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{读入开始坐标}Readln(x1,y1);{读入结束坐标}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判断是否越界}ElseFind(x,y);Writeln('Total:',total){打出总数}END.这样做是完全可行的,它输入的是全部解,但是马遍历当8×8时解是非常之多的,用天文数字形容也不为过,这样一来求解的过程就非常慢,并且出一个解也非常慢。
怎么才能快速地得到部分解呢?
【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。这种算法称为为贪心算法,也叫贪婪算法或启发式算法,它对整个求解过程的局部做最优调整,它只适用于求较优解或者部分解,而不能求最优解。这样的调整方法叫贪心策略,至于什么问题需要什么样的贪心策略是不确定的,具体问题具体分析。实验可以证明马遍历问题在运用到了上面的贪心策略之后求解速率有非常明显的提高,如果只要求出一个解甚至不用回溯就可以完成,因为在这个算法提出的时候世界上还没有计算机,这种方法完全可以用手工求出解来,其效率可想而知。
❷ 程序员算法基础——贪心算法
贪心是人类自带的能力,贪心算法是在贪心决策上进行统筹规划的统称。
比如一道常见的算法笔试题---- 跳一跳 :
我们自然而然能产生一种解法:尽可能的往右跳,看最后是否能到达。
本文即是对这种贪心决策的介绍。
狭义的贪心算法指的是解最优化问题的一种特殊方法,解决过程中总是做出当下最好的选择,因为具有最优子结构的特点,局部最优解可以得到全局最优解;这种贪心算法是动态规划的一种特例。 能用贪心解决的问题,也可以用动态规划解决。
而广义的贪心指的是一种通用的贪心策略,基于当前局面而进行贪心决策。以 跳一跳 的题目为例:
我们发现的题目的核心在于 向右能到达的最远距离 ,我们用maxRight来表示;
此时有一种贪心的策略:从第1个盒子开始向右遍历,对于每个经过的盒子,不断更新maxRight的值。
贪心的思考过程类似动态规划,依旧是两步: 大事化小 , 小事化了 。
大事化小:
一个较大的问题,通过找到与子问题的重叠,把复杂的问题划分为多个小问题;
小事化了:
从小问题找到决策的核心,确定一种得到最优解的策略,比如跳一跳中的 向右能到达的最远距离 ;
在证明局部的最优解是否可以推出全局最优解的时候,常会用到数学的证明方式。
如果是动态规划:
要凑出m元,必须先凑出m-1、m-2、m-5、m-10元,我们用dp[i]表示凑出i元的最少纸币数;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根据以上递推方程和初始化信息,可以容易推出dp[1~m]的所有值。
似乎有些不对? 平时我们找零钱有这么复杂吗?
从贪心算法角度出发,当m>10且我们有10元纸币,我们优先使用10元纸币,然后再是5元、2元、1元纸币。
从日常生活的经验知道,这么做是正确的,但是为什么?
假如我们把题目变成这样,原来的策略还能生效吗?
接下来我们来分析这种策略:
已知对于m元纸币,1,2,5元纸币使用了a,b,c张,我们有a+2b+5c=m;
假设存在一种情况,1、2、5元纸币使用数是x,y,z张,使用了更少的5元纸币(z<c),且纸币张数更少(x+y+z<a+b+c),即是用更少5元纸币得到最优解。
我们令k=5*(c-z),k元纸币需要floor(k/2)张2元纸币,k%2张1元纸币;(因为如果有2张1元纸币,可以使用1张2元纸币来替代,故而1元纸币只能是0张或者1张)
容易知道,减少(c-z)张5元纸币,需要增加floor(5*(c-z)/2)张2元纸币和(5*(c-z))%2张纸币,而这使得x+y+z必然大于a+b+c。
由此我们知道不可能存在使用更少5元纸币的更优解。
所以优先使用大额纸币是一种正确的贪心选择。
对于1、5、7元纸币,比如说要凑出10元,如果优先使用7元纸币,则张数是4;(1+1+1+7)
但如果只使用5元纸币,则张数是2;(5+5)
在这种情况下,优先使用大额纸币是不正确的贪心选择。(但用动态规划仍能得到最优解)
如果是动态规划:
前i秒的完成的任务数,可以由前面1~i-1秒的任务完成数推过来。
我们用 dp[i]表示前i秒能完成的任务数 ;
在计算前i秒能完成的任务数时,对于第j个任务,我们有两种决策:
1、不执行这个任务,那么dp[i]没有变化;
2、执行这个任务,那么必须腾出来(Sj, Tj)这段时间,那么 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如说对于任务j如果是第5秒开始第10秒结束,如果i>=10,那么有 dp[i]=max(dp[i], dp[5] + 1); (相当于把第5秒到第i秒的时间分配给任务j)
再考虑贪心的策略,现实生活中人们是如何安排这种多任务的事情?我换一种描述方式:
我们自然而然会想到一个策略: 先把结束时间早的兼职给做了!
为什么?
因为先做完这个结束时间早的,能留出更多的时间做其他兼职。
我们天生具备了这种优化决策的能力。
这是一道 LeetCode题目 。
这个题目不能直接用动态规划去解,比如用dp[i]表示前i个人需要的最少糖果数。
因为(前i个人的最少糖果数)这种状态表示会收到第i+1个人的影响,如果a[i]>a[i+1],那么第i个人应该比第i+1个人多。
即是 这种状态表示不具备无后效性。
如果是我们分配糖果,我们应该怎么分配?
答案是: 从分数最低的开始。
按照分数排序,从最低开始分,每次判断是否比左右的分数高。
假设每个人分c[i]个糖果,那么对于第i个人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默认为0,如果在计算i的时候,c[i-1]为0,表示i-1的分数比i高)
但是,这样解决的时间复杂度为 O(NLogN) ,主要瓶颈是在排序。
如果提交,会得到 Time Limit Exceeded 的提示。
我们需要对贪心的策略进行优化:
我们把左右两种情况分开看。
如果只考虑比左边的人分数高时,容易得到策略:
从左到右遍历,如果a[i]>a[i-1],则有c[i]=c[i-1]+1;否则c[i]=1。
再考虑比右边的人分数高时,此时我们要从数组的最右边,向左开始遍历:
如果a[i]>a[i+1], 则有c[i]=c[i+1]+1;否则c[i]不变;
这样讲过两次遍历,我们可以得到一个分配方案,并且时间复杂度是 O(N) 。
题目给出关键信息:1、两个人过河,耗时为较长的时间;
还有隐藏的信息:2、两个人过河后,需要有一个人把船开回去;
要保证总时间尽可能小,这里有两个关键原则: 应该使得两个人时间差尽可能小(减少浪费),同时船回去的时间也尽可能小(减少等待)。
先不考虑空船回来的情况,如果有无限多的船,那么应该怎么分配?
答案: 每次从剩下的人选择耗时最长的人,再选择与他耗时最接近的人。
再考虑只有一条船的情况,假设有A/B/C三个人,并且耗时A<B<C。
那么最快的方案是:A+B去, A回;A+C去;总耗时是A+B+C。(因为A是最快的,让其他人来回时间只会更长, 减少等待的原则 )
如果有A/B/C/D四个人,且耗时A<B<C<D,这时有两种方案:
1、最快的来回送人方式,A+B去;A回;A+C去,A回;A+D去; 总耗时是B+C+D+2A (减少等待原则)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;总耗时是 3B+D+A (减少浪费原则)
对比方案1、2的选择,我们发现差别仅在A+C和2B;
为何方案1、2差别里没有D?
因为D最终一定要过河,且耗时一定为D。
如果有A/B/C/D/E 5个人,且耗时A<B<C<D<E,这时如何抉择?
仍是从最慢的E看。(参考我们无限多船的情况)
方案1,减少等待;先送E过去,然后接着考虑四个人的情况;
方案2,减少浪费;先送E/D过去,然后接着考虑A/B/C三个人的情况;(4人的时候的方案2)
到5个人的时候,我们已经明显发了一个特点:问题是重复,且可以由子问题去解决。
根据5个人的情况,我们可以推出状态转移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根据我们考虑的1、2、3、4个人的情况,我们分别可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);
由上述的状态转移方程和初始化值,我们可以推出dp[n]的值。
贪心的学习过程,就是对自己的思考进行优化。
是把握已有信息,进行最优化决策。
这里还有一些收集的 贪心练习题 ,可以实践练习。
这里 还有在线分享,欢迎报名。
❸ 贪心算法及其应用
求解一个问题时有多个步骤,每个步骤都选择当下最优的那个解,而不用考虑整体的最优解。通常,当我们面对的问题拥有以下特点的时候,就可以考虑使用贪心算法。
比如,我们举个例子,仓库里面总共有五种豆子,其对应的重量和总价值如下,现在我们有一个可以装100KG重量的袋子,怎么装才能使得袋子中的豆子价值最大?
我们首先看看这个问题是否符合贪心算法的使用场景?限制值是袋子100KG,期望值是袋子里面的价值最高。所以是符合的。那么我们尝试着应用下贪心算法的方法,每一个步骤都寻找当下的最优解,怎么做呢?
把仓库里面的每种豆子价值除以重量,得出每种豆子的单价,那么当下的最优解,肯定是尽可能最多地装单价最贵的,也就是先把20KG的黄豆都装上,然后再把30KG的绿豆都装上,再装50KG的红豆,那么此时正好装满袋子,总价值将是270元,这就是通过贪心算法求解的答案。
贪心算法的应用在这个问题上的求解是否是最优解需要一个很复杂的数学论证,我们不用那样,只要心里举几个例子,验证下是否比它更好即可,如果举不出例子,那么就可以认为这就是最优解了。
虽然贪心算法虽然在大部分实践场景中都能得到最优解,但是并不能保证一定是最优解。比如在如下的有向带权图中寻找从S到T的最短路径,那么答案肯定就是S->A->E->T,总代价为1+4+4=9;
然而,实际上的最短路径是S->B->D->T,总代价为6。
所以,不能所有这类问题都迷信贪心算法的求解,但其作为一种算法指导思想,还是很值得学习的。
除了以上袋子装豆子的问题之外,还有很多应用场景。这种问题能否使用贪心算法来解决的关键是你能否将问题转换为贪心算法适用的问题,即找到问题的限制值和期望值。
我们有m个糖果要分给n个孩子,n大于m,注定有的孩子不能分到糖果。其中,每个糖果的大小都不同,分别为S1,S2,S3...,Sm,每个孩子对糖果的需求也是不同的,为N1,N2,N3...,Nn,那么我们如何分糖果,才能尽可能满足最多数量孩子的需求?
这个问题中,限制值是糖果的数量m,期望值满足最多的孩子需求。对于每个孩子,能用小的糖果满足其需求,就不要用大的,避免浪费。所以我们可以给所有孩子的需求排个序,从需求最小的孩子开始,用刚好能满足他的糖果来分给他,以此来分完所有的糖果。
我们有1元、5元、10元、20元、50元、100元纸币各C1、C5、C10、C20、C50、C100张,现在要购买一个价值K元的东西,请问怎么才能适用最少的纸币?
这个问题应该不难,限制值是各个纸币的张数,期望值是适用最少的纸币。那么我们就先用面值最大的100元去付钱,当再加一张100元就超过K时,就更换小面额的,直至正好为K元。
对于n个区间[L1,R1],[L2,R2]...[Ln,Rn],我们怎么从中选出尽可能多的区间,使它们不相交?
我们需要把这个问题转换为符合贪心算法特点的问题,假设这么多区间的最左端点是Lmin,最右端点是Rmax,那么问题就是在[Lmin,Rmax]中,选择尽可能多的区间往里面塞,并且保证它们不相交。这里,限制值就是区间[Lmin,Rmax],期望值就是尽可能多的区间。
我们的解决办法就是每次从区间中选择那种左端点>=已经覆盖区间右边端点的,且该区间右端点尽可能高小的。如此,我们可以让未覆盖区间尽可能地大,才能保证可以塞进去尽可能多的区间。
贪心算法最重要的就是学会如何将要解决的问题抽象成适合贪心算法特点的模型,找到限制条件和期望值,只要做好这一步,接下来的就比较简单了。在平时我们不用刻意去记,多多练习类似的问题才是最有效的学习方法。
❹ 活动选择(贪心算法)
参考: 【算法导论】贪心算法之活动选择问题
贪心算法(Greedy Algorithm)在每一步都做出当时看起来最佳的选择,寄希望这样的选择能导致全局最优解。
这种算法并不能保证得到最优解,但对很多问题确实可以求得最优解。
假定有一个n个活动的集合S={a1,a2,a3,...,an},这些活动 使用同一个资源 ,而这个资源在某个时刻 只能给一个活动使用 。每个活动都有一个 开始时间si 和一个 结束时间fi ,其中0<=si<fi<=∞。
如果活动ai被选中,则此活动发生在 半开区间[si,fi) 中。
若两个活动ai和aj的 时间区间不重叠 ,则称这两个活动是 兼容 的
在活动选择问题中,我们希望选出一个最大兼容活动集。
假定活动已经按照 结束时间递增顺序 排好序
f1<=f2<=f3<=...<=fn
考虑如下例子:
可以看到,{a3,a9,a11}是由相互兼容的活动组成。但它不是一个最大集,{a1,a4,a8,a11}更大,是一个最大集。(最大集不唯一)
假设:Sij表示在ai结束之后,在aj开始之前的活动的 集合 。Aij表示Sij的一个最大相互兼容的活动子集。
那么只要Sij非空,则Aij至少会包含一个活动,假设为ak。那么可以将Aij分解为:Aij = Aik+ak+Akj。
假设Cij为Aij的大小,那么有Cij=cik+ckj+1。
于是,我们可以利用动态规划得到这个问题的递归解
我们当然可以利用动态规划自底向上地求解这个问题,但是我们可以利用贪心算法更快地求解问题答案。
我们选择活动 结束时间最早 的那个活动,这样能够给其他活动尽可能的腾出多余的时间,而后每一步都在剩下的活动中选取最早的活动,这样就可以获得一个最优解。
为什么贪心选择——最早结束的活动ai——总是最优解的一部分呢?
假设Aij是Sij的某个最大兼容活动集,假设Aij中,最早结束的活动是an。(an是最优解中最早结束的,不一定是原先活动中最早结束的)我们要证明我们选择的a1(原先活动集中最早结束的)也在最优解中。
分两种情况:
①如果an=a1,则得证
②如果an不等于a1,则an的结束时间一定会 晚于 a1的结束时间,我们用a1去 替换 Aij中的an,于是得到A',由于a1比an结束的早,而Aij中的其他活动都比an的结束时间开始 的要晚,所以A'中的 其他活动 都与a1不相交 ,所以A'中的所有活动是兼容的,所以A`也是Sij的一个最大兼容活动集。
(简单说,就是用a1 替换 an,得到另一个解A',由于a1最早结束,当然与其他活动不相交,于是A'也兼容且个数和A一样,所以A'也是最优解)
于是证明了命题。
通过以上分析,我们可以反复地选择最先结束的活动,保留于此活动兼容的活动,重复执行,直到不再有剩余活动。
贪心算法通常是 自顶向下 地设计:做出一个选择,然后求解剩下的那个子问题
为了方便初始化,我们添加一个虚拟活动a0,其结束时间为f0=0
由于我们之前就已经将活动按结束时间排好序,每一次找元素都只对元素访问一次,所以贪心算法的时间复杂度是大theta(n)
❺ [算法] 贪心算法证明思路
动态规划和贪心算法都需要问题具有最优子结构,但不同的是贪心 自顶向下 ,先做选择再求解一个结果子问题,而动态规划自底向上求解子问题,需要先求出子问题的最优解再做选择。这是因为,动态规划最优解有两个子问题时,求解子问题 时有j-i-1种选择,但贪心选择特征能够使 其中一个子问题必定为空 ,这种子问题和选择数目的减少使得子问题能够自顶向下被解决。
a) 定义子问题空间,做出一个选择从而产生一个或多个子问题。子问题空间的定义结合需要求解的目标和选择后子问题的描述刻画来考虑。
b) 利用“剪切-粘贴”证明作为最优解的组成部分的每个子问题的解也是它本身的最优解。如果子问题的解不是最优解,将其替换为对应的最优解从而一定能得到原问题一个更优的解,这与最初的解是原问题的最优解的前提假设矛盾,因此最优子结构得证。
贪心的本质是局部最优解能产生全局最优解,即产生两个子问题 和 时,可以直接解决子问题 (在子问题 中,使用贪心策略选择a作为局部最优解)然后对子问题 进行分解,最终可以合并为全局最优解。
因此,要证明贪心选择性质只需要证明 存在一个最优解是通过当前贪心选择策略得到的 ,反过来,即证明**通过非贪心策略得到的原问题的最优解中也一定包含局部最优解a。
定义通过非贪心策略的选择可以得到的一个最优解A,将最优解中的元素和当前贪心策略会选择的元素逐个交换后得到的解A'并不比
A差(假设贪心策略会选择的元素在当前最优解中未被选择,通过“剪切-粘贴”证明得到的仍是最优解),可以证明存在原问题的最优解可以通过贪心选择得到。
❻ 刘汝佳的算法艺术与信息学竟赛13页1.2.2节贪心法例一:钓鱼!分析部分第一段话怎样理解
贪心法(Greedy algorithm)是一种在每一步选择中都采取在当前状态下最好/优的选择,从而希望导致结果是最好/优的算法。比如在旅行推销员问题中,如果旅行员每次都选择最近的城市, 那这就是一种贪心算法。
贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。
贪心算法与动态规划的不同在于它每对每个子问题的解决方案都做出选择,不能回退。动态规划则会保存以前的运算结果,并根据以前的结果对当前进行选择,有回退功能。
贪心法可以解决一些最优性问题,如:求图中的最小生成树、求哈夫曼编码……对于其他问题,贪心法一般不能得到我们所要求的答案。一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。由于贪心法的高效性以及其所求得的答案比较接近最优结果,贪心法也可以用作辅助算法或者直接解决一些要求结果不特别精确的问题。
贪心法解题特点
贪心法有一个共同的点就是在最优求解的过程中都采用一种局部最优策略,把问题范围和规模缩小最后把每一步的结果合并起来得到一个全局最优解。
贪心法解题的一般步骤
(1)从问题的某个初始解出发;
(2)采用循环语句,当可以向求解目标前进一部时,就根据局部最优策略,得到一个部分解,缩小问题的范围和规模;
(3)将所有部分解综合起来,得到问题最终解。
❼ 贪心算法几个经典例子
[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
贪心算法是很常见的算法之一,这是由于它简单易行,构造贪心策略简单。但是,它需要证明后才能真正运用到题目的算法中。一般来说,贪心算法的证明围绕着整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于本例题中的3种贪心策略,都无法成立,即无法被证明。