㈠ 求开方的计算方法
因为根号38在整数6,7中间,然后取小的一位。根号38一定是个无理数所以只要根号38减去6就可以得出小数部分。最后6+{根号38-6}就是根号38的答案。
㈡ 开方的简便算法
开方的简便算法是:
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表. 我们计算0.5*(350+136161/350)得到369.5 然后我们再计算0.5*(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,369^2末尾数字为1.我们有理由断定369^2=136161 一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。
此方法是在高一学万有引力和航天时,因需要大量开平方运算又不能用计算器,而被逼无奈研发的。
开立方的方法与开平方的方法很类似,但要复杂很多,如果不能熟练掌握,倒不如按大脸猫说的方法:凑!当然,熟练掌握以后,比凑的方法是快多了。
拓展资料
开方(英文rooting),指求一个数的方根的运算,为乘方的逆运算(参见“方根”词条)。在中国古代也指求二次及高次方程(包括二项方程)的正根。
㈢ 对整数求平方根的算法
这语言我不会,算法倒是简单。既然是整数开平方,设一个变量,从1开始,每次加0.01,直到变量的平方减去要开平方的整数<0.001或者>0.001就行了。
㈣ 任意整数的开方的算法
用迭代法,
根号2约等于1+1/(2+1/(2+1/(2+1/(2+1/1.5))))
用计算器按1/(2+ANS) n遍再加1,就是根号2
㈤ 开方怎么算
举个例子,1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3。于是问题的关键在于:如何求出它的个位数a?为此,我们从a所满足的关系式来入手。
根据两数和的平方公式,可以得到
1156=(30+a)^2=30^2+2×30a+a^2,
所以1156-30^2=2×30a+a^2,
即256=(30×2+a)a,
也就是说, a是这样一个正整数,它与30×2的和,再乘以它本身,等于256。
为便于求得a,可用下面的竖式来进行计算:
根号上面的数3是平方根的十位数。将 256试除以30×2,得4(如果未除尽则取整数位).由于4与30×2的和64,与4的积等于256,4就是所求的个位数a。竖式中的余数是0,表示开方正好开尽。于是得到 1156=34^2, 或√1156=34.上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
开方的计算步骤
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用“ ' ”这个符号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,所以试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商,如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小之后再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用相同的方法,继续求平方根的其余各位上的数。
如碰到开不尽的情况,可根据所要求的精确度求出它的近似值。例如求其近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到。
笔算开平方运算较复杂,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值。
㈥ 数的开方的计算方法
67081的平方根=259
算法1:
假设被开放数为a,如果用sqrt(a)表示根号a 那么((sqrt(x)-sqrt(a/x))^2=0的根就是sqrt(a)
变形得
sqrt(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和sqrt(5)相差已经小于0.001
或者可以用二分法:
设f(x)=x^2-a
那么sqrt(a)就是f(x)=0的根。
你可以先找两个正值m,n使f(m)<0,f(n)>0
根据函数的单调性,sqrt(a)就在区间(m,n)间。
然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么sqrt(a)就在区间(m,(m+n)/2)之间。
小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是sqrt(a)。这样重复几次,你可以把sqrt(a)存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于sqrt(a)。
㈦ 一个大整数开方的算法,看不懂,求解释
为了解决用户可能碰到关于"#include<iostream> #include<string.h> using namespace std; int main() { char *s1="wo shi shui"; cha"相关的问题,突袭网经过收集整理为用户提供相关的解决办法,请注意,解决办法仅供参考,不代表本网同意其意见,如有任何问题请与本网联系。"#include<iostream> #include<string.h> using namespace std; int main() { char *s1="wo shi shui"; cha"相关的详细问题如下:RT,我想知道:#include<iostream> #include<string.h> using namespace std; int main() { char *s1="wo shi shui"; cha
===========突袭网收集的解决方案如下===========
解决方案1:
为什么strcpy()再此处不能用
解决方案2:
system("
#include<wo shi shui"endl;endl.h><sizeof(s1)<
strcpy(s1;< "
return 0;string;
cout<ni hao"iostream><s1<<
cout<<;
int main()
{
char *s1=",s2););<
using namespace std;strlen(s1)<
char *s2="<PAUSE"#include<"
解决方案3:
因为s1所指的是常量内存,不能写数据。
解决方案4:
和memcpy()有什么差别
解决方案5:
memcpy()是重新申请一个内存。而strcpy()是往已有内存中写数据
㈧ 开方的具体算法
以3的开平方为例:
1)sqrt(3)开得1。3-1=2,补两个0得到200
2)将前次开得的值乘以20。1*20=20。按以下式子:(20+x)*x小于且最趋近200,得到x=7,于是有sqrt(3)=1.7;200-27*7=11,补两个0得到1100;
3)继续按上面方法:17*20=340,(340+x)*x小于且最接近1100,得到x=3,
于是有sqrt(3)=1.73,1100-343*3=71,补两个0得7100
4)173*20=3460,求的本位的x=2,于是sqrt(3)=1.732,7100-3462*2=176,补成17600。
…………
某一位上如果求得是0,则再补两个00转到下一位。
㈨ 开方的计算方法
开平方运算也即是开平方后所得的数的平方即原数,也就是说开平方是平方的逆运算。
例:求256的平方根
第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。
例,第一步:将256,分成两段:
2,56
表示平方根是两位数(XY,X表是平方根十位上数,Y表示个位数)。
第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。
例:左边第一段数值是2,2的平方根是大约等于1.414(这些尽量要记得,100以内的,尤其是能开整数的),由于2的平方根1.414大于1和小于2,所以取整数部分是1作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是1。
第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
例:第一段数里的数是2.第二步计算出最高数是1
2减去1的平方=1
将1与第二段数(56)组成一个第一个余数:156
第四步:把第二步求得的最高位数(1)乘以20去试除第一个余数(156),取所得结果的整数部分作为第一个试商。
例: 156除以(1乘20)=7.8
第一个试商就是7
第五步:第二步求得的的最高位数(1)乘以20再加上第一个试商(7)再乘以第一个试商(7)。
(1*20+7)*7
如果:(1*20+7)*7小于等于156,则7就是平方根的第二位数.
如果:(1*20+7)*7大于156,将第一个试商7减1,即用6再计算。
由于:(1*20+6)*6=156所以,6就是第平方根的第二位数。
例:求55225的平方根
第一步:将被开方数的整数个位起向左每隔两位划为一段,用逗号分开,分成几段,表示所求平方根是几位数。
例,第一步:将55225,分成三段:
5,52,25
表示平方根是三位数(XYZ)。
第二步:根据左边第一段里的数,取该数的平方根的整数部分,作为所要求的平方根求最高位上的数。
例:左边第一段数值是5,5的平方根是(2点几)大于2和小于3,所以取整数部分是2作为所要求的平方根求最高位上的数,即所要求的平方根最高位X是2。
第三步:从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。
例:第一段数里的数是5.第二步计算出最高数是2
5减去2的平方=1
将1与第二段数(52)组成一个第一个余数:152
第四步:把第二步求得的最高位数(2)乘以20去试除第一个余数(152),取所得结果的整数部分作为第一个试商。
例: 152除以(2乘20)=3.8
第一个试商就是3
第五步:第二步求得的的最高位数(2)乘以20再加上第一个试商(3)再乘以第一个试商(3)。
(2*20+3)*3
如果:(2*20+3)*3小于等于152,则3就是平方根的第二位数.
如果:(2*20+3)*3大于152,将第一个试商3减1,即用2再计算。
由于:(2*20+3)*3小于152所以,3就是第平方根的第二位数。
第六步:用同样的方法,继续求平方根的其他各位上的数。用上一个余数减去上法中所求的积(即152-129=23),与第三段数组成新的余数(即2325)。这时再求试商,要用前面所得到的平方根的前两位数(即23)乘以20去试除新的余数(2325),所得的最大整数为新的试商。(2325/(23×20)的整数部分为5。)
7.对新试商的检验如前法。(右例中最后的余数为0,刚好开尽,则235为所求的平方根。)
㈩ 开方计算公式
1、平方根
如果一个数的平方等于
a,那么这个数叫做a的平方根(square
root),即如果x2=a,则x叫做a的平方根,记作x=±,其中a叫被开方数.
2、平方根的性质
(1)任何一个正数的平方根有两个,它们互为相反数.如正数a的平方根是±,其中+与-恰是一对相反数;
(2)零的平方根是零,即=0;
(3)负数没有平方根.
3、算术平方根
正数a的正的平方根,叫做a的算术平方根.
4、开平方
求一个非负数的平方根的运算,叫做开平方,开平方与平方互为逆运算
.
5、立方根
如果一个数的立方等于
a,那么这个数叫做a的立方根(cube
root),即如果x3=a,则x叫做a的立方根,记作:x=.
6、立方根的性质
任何一个正数的立方根是一个正数,即a0时,0;
任何一个负数的立方根是一个负数,即a0时,0;
零的立方根仍是零,即a=0时,=0.
7、开立方
求一个数的立方根的运算叫做开立方.开立方与立方互为逆运算.
8、二次根式的定义
形如(a≥0)的式子叫二次根式.
9、二次根式有意义的取值范围
二次根式有意义的取值范围是被开方数必须是非负数
.
10、二次根式的性质
(1)≥0(a≥0),即一个非负数的算术平方根是一个非负数.
(2)(a≥0),即一个非负数的算术平方根的平方等于这个非负数.
(3),即一个数的平方的算术平方根等于这个数的绝对值.
(4)当a≥0时,,即一个非负数的算术平方根的平方等于这个数的平方的算术平方根.
(5)当a≥0时,a=,即一个非负数等于它的算术平方根的平方.
11、二次根式乘除法法则
(a≥0,b≥0),即二次根式相乘就是把被开方数相乘,根指数不变.(a≥0,b0),即二次根式相除,就是把被开方数相除,根指数不变.
12、二次根式的性质
(1)积的算术平方根的性质:(a≥0,b≥0),即积的算术平方根等于各个因式的算术平方根的积.
(2)商的算术平方根的性质:(a≥0,b0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
13、最简二次根式
满足条件:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数不含能开得尽方的因数或因式的二次根式称为最简二次根式.
14、同类二次根式
n个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.
15、二次根式的加减法
先把二次根式化成最简二次根式,再合并同类二次根式
.
16、二次根式的混合运算
二次根式的混合运算按运算顺序和运算法则进行计算,能用乘法公式的则宜用乘法公式
.