导航:首页 > 源码编译 > 蚁群算法的有效性

蚁群算法的有效性

发布时间:2022-03-05 17:05:10

1. 蚁群算法,退火算法这些东西究竟属于什么,这些东西要从哪里才能系统学习

第1章绪论
1.1蚂蚁的基本习性
1.1.1蚂蚁的信息系统
1.1.2蚁群社会的遗传与进化
1.2蚁群觅食行为与觅食策略
1.2.1蚂蚁的觅食行为
1.2.2蚂蚁的觅食策略
1.3人工蚁群算法的基本思想
1.3.1人工蚁与真实蚂蚁的异同
1.3.2人工蚁群算法的实现过程
1.4蚁群优化算法的意义及应用
1.4.1蚁群优化算法的意义
l.4.2蚁群算法的应用
1.5蚁群算法的展望
第2章蚂蚁系统——蚁群算法的原型
2.1蚂蚁系统模型的建立
2.2蚁量系统和蚁密系统的模型
2.3蚁周系统模型
第3章改进的蚁群优化算法
3.1带精英策略的蚂蚁系统
3.2基于优化排序的蚂蚁系统
3.3蚁群系统
3.3.1蚁群系统状态转移规则
3.3.2蚁群系统全局更新规则
3.3.3蚁群系统局部更新规则
3.3.4候选集合策略
3.4最大一最小蚂蚁系统
3.4.1信息素轨迹更新
3.4.2信息素轨迹的限制
3.4.3信息素轨迹的初始化
3.4.4信息素轨迹的平滑化
3.5最优一最差蚂蚁系统
3.5.1最优一最差蚂蚁系统的基本思想
3.5.2最优一最差蚂蚁系统的工作过程
第4章蚁群优化算法的仿真研究
4.1蚂蚁系统三类模型的仿真研究
4.1.1三类模型性能的比较
4.2.2基于统计的参数优化
4.2基于蚁群系统模型的仿真研究
4.2.1局部优化算法的有效性
4.2.2蚁群系统与其他启发算法的比较
4.3最大一最小蚂蚁系统的仿真研究
4.3.1信息素轨迹初始化研究
4.3.2信息素轨迹量下限的作用
4.3.3蚁群算法的对比
4.4最优一最差蚂蚁系统的仿真研究
4.4.1参数ε的设置
4.4.2几种改进的蚁群算法比较
第5章蚁群算法与遗传、模拟退火算法的对比
5.1遗传算法
5.1.1遗传算法与自然选择
5.1.2遗传算法的基本步骤
5.1.3旅行商问题的遗传算法实现
5.2模拟退火算法
5.2.1物理退火过程和Metroplis准则
5.2.2模拟退火法的基本原理
5.3蚁群算法与遗传算法、模拟退火算法的比较
5.3.1三种算法的优化质量比较
5.3.2三种算法收敛速度比较
5.3.3三种算法的特点与比较分析
第6章蚁群算法与遗传、免疫算法的融合
6.1遗传算法与蚂蚁算法融合的GAAA算法
6.1.1遗传算法与蚂蚁算法融合的基本思想
……
第7章自适应蚁群算法
第8章并行蚁群算法
第9章蚁群算法的收敛性与蚁群行为模型
第10章蚁群算法在优化问题中的应用
附录
参考文献

2. 蚁群算法的概念,最好能举例说明一些蚁群算法适用于哪些问题!

概念:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值

其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序

应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内

引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点: 1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。 引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。 既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了! 蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。 其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。

具体参考http://ke..com/view/539346.htm
希望对你有帮助,谢谢。

3. 哪本python书立有蚁群算法

简介

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
定义

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

解决的问题

三维地形中,给出起点和重点,找到其最优路径。

程序代码:

numpy as npimport matplotlib.pyplot as plt%pylabcoordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],[1340.0,725.0],[1740.0,245.0]])def getdistmat(coordinates):num = coordinates.shape[0]distmat = np.zeros((52,52))for i in range(num):for j in range(i,num):distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])return distmatdistmat = getdistmat(coordinates)numant = 40 #蚂蚁个数numcity = coordinates.shape[0] #城市个数alpha = 1 #信息素重要程度因子beta = 5 #启发函数重要程度因子rho = 0.1 #信息素的挥发速度Q = 1iter = 0itermax = 250etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度pheromonetable = np.ones((numcity,numcity)) # 信息素矩阵pathtable = np.zeros((numant,numcity)).astype(int) #路径记录表distmat = getdistmat(coordinates) #城市的距离矩阵lengthaver = np.zeros(itermax) #各代路径的平均长度lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路径长度pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路径长度while iter < itermax:# 随机产生各个蚂蚁的起点城市if numant <= numcity:#城市数比蚂蚁数多pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]else: #蚂蚁数比城市数多,需要补足pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]length = np.zeros(numant) #计算各个蚂蚁的路径距离for i in range(numant):visiting = pathtable[i,0] # 当前所在的城市#visited = set() #已访问过的城市,防止重复#visited.add(visiting) #增加元素unvisited = set(range(numcity))#未访问的城市unvisited.remove(visiting) #删除元素for j in range(1,numcity):#循环numcity-1次,访问剩余的numcity-1个城市#每次用轮盘法选择下一个要访问的城市listunvisited = list(unvisited)probtrans = np.zeros(len(listunvisited))for k in range(len(listunvisited)):probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)*np.power(etatable[visiting][listunvisited[k]],alpha)cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()cumsumprobtrans -= np.random.rand()k = listunvisited[find(cumsumprobtrans>0)[0]] #下一个要访问的城市pathtable[i,j] = kunvisited.remove(k)#visited.add(k)length[i] += distmat[visiting][k]visiting = klength[i] += distmat[visiting][pathtable[i,0]] #蚂蚁的路径距离包括最后一个城市和第一个城市的距离#print length# 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数lengthaver[iter] = length.mean()if iter == 0:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()else:if length.min() > lengthbest[iter-1]:lengthbest[iter] = lengthbest[iter-1]pathbest[iter] = pathbest[iter-1].()else:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()# 更新信息素changepheromonetable = np.zeros((numcity,numcity))for i in range(numant):for j in range(numcity-1):changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]pheromonetable = (1-rho)*pheromonetable + changepheromonetableiter += 1 #迭代次数指示器+1#观察程序执行进度,该功能是非必须的if (iter-1)%20==0:print iter-1# 做出平均路径长度和最优路径长度fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))axes[0].plot(lengthaver,'k',marker = u'')axes[0].set_title('Average Length')axes[0].set_xlabel(u'iteration')axes[1].plot(lengthbest,'k',marker = u'')axes[1].set_title('Best Length')axes[1].set_xlabel(u'iteration')fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')plt.close()#作出找到的最优路径图bestpath = pathbest[-1]plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$cdot$')plt.xlim([-100,2000])plt.ylim([-100,1500])for i in range(numcity-1):#m,n = bestpath[i],bestpath[i+1]print m,nplt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')ax=plt.gca()ax.set_title("Best Path")ax.set_xlabel('X axis')ax.set_ylabel('Y_axis')plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')plt.close()

4. 如何有效地提高蚁群算法算法的效率

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术.它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值.
蚁群算法是一种求解组合最优化问题的新型通用启发式方法,该方法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点.通过建立适当的数学模型,基于故障过电流的配电网故障定位变为一种非线性全局寻优问题.由柳洪平创建.
预期的结果:
各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物.当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来.最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着.
原理:
为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序.
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现.事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来.这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内.
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素.每个蚂蚁都仅仅能感知它范围内的环境信息.环境以一定的速率让信息素消失.
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去.否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动.蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应.
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动.为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开.
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为.
7、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少.
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了.比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物.
问题:
说了这么多,蚂蚁究竟是怎么找到食物的呢?
在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则.首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰.这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对.这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物.
当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的.
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟.信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来.假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要).当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了.也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来.
引申
跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:
1、多样性
2、正反馈
多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素.信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快.
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性.
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围.
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前.而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈.
蚁群算法的实现
下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.
其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素.信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快.
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性.
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围.
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前.而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈.

5. 什么是蚁群算法,神经网络算法,遗传算法

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

6. 信用分析的古典信用分析方法

因此,在信贷决策过程中,信贷管理人员的专业知识、主观判断以及某些要考虑的关键要素权重均为最重要的决定因素。
在专家制度法下,绝大多数银行都将重点集中在借款人的“5c”上,即品德与声望(character)、资格与能力(capacity)、资金实力(capital or cash) 、担保(collateral)、经营条件或商业周期(condition)。也有些银行将信用分析的内容归纳为“5w”或“5p”。 “5w”系指借款人(who)、借款用途(why) 、还款期限(when)、担保物(what)、如何还款(how);“5p”系指个人因素( personal)、目的因素( purpose) 、偿还因素( payment)、保障因素(protection)、前景因素(perspective)。这种方法的缺陷是主观性太强,只能作为一种辅助性信用分析工具。 贷款评级分类模型是金融机构在美国货币监理署(occ)最早开发的评级系统基础上拓展而来,occ对贷款组合分为正常、关注、次级、可疑、损失等5类,并要求对不同的贷款提取不同比例的损失准备金以弥补贷款损失。
在我国,1998年以前各商业银行贷款分类的方法一直沿用财政部《金融保险企业财务制度》的规定,把贷款分为正常、逾期、呆滞、呆账四类,后三类合称不良贷款,简称“一逾两呆法”。 这一方法低估了不良贷款, 因为它没包括仍支付利息尚未展期的高风险贷款。1998年我国开始借鉴国际监管经验,对贷款分类进行改革,按照风险程度将贷款划分为正常、关注、次级、可疑、损失五类,即五级分类方法。2003年12月中国银监会发布文件决定自2004年1月1日起,我国所有经营信贷业务的金融机构正式实施贷款五级分类制度。 信用评分方法是对反映借款人经济状况或影响借款人信用状况的若干指标赋予一定权重,通过某些特定方法得到信用综合分值或违约概率值,并将其与基准值相比来决定是否给予贷款以及贷款定价,其代表为z计分模型。
z计分模型是Altman 1968 年提出的以财务比率为基础的多变量模型。该模型运用多元判别分析法,通过分析一组变量,使其在组内差异最小化的同时实现组间差异最大化,在此过程中要根据统计标准选入或舍去备选变量,从而得出z 判别函数。根据z值的大小同衡量标准相比,从而区分破产公司和非破产公司。1995 年,对于非上市公司,Altman对z 模型进行了修改,得到z′计分模型。Altman、Haldeman 和Narayannan在1977 年对原始的z 计分模型进行扩展,建立的第二代的zeta 信用风险模型。该模型在公司破产前5 年即可有效划分出将要破产的公司,其中破产前1 年准确度大于90 % ,破产前5 年的准确度大于70 %。新模型不仅适用于制造业,而且其有效性同样适用于零售业。上述两种模型中,zeta 分类准确度比z 计分模型高,特别是破产前较长时间的预测准确度相对较高。由于方法简便、成本低、效果佳,上述方法应用十分广泛。
值得注意的是该类模型构建中的数理方法,综合以来,主要有以下几种:
1.判别分析法(discriminant analysis)
判别分析法(discriminant analysis,简称DA) 是根据观察到的一些统计数字特征,对客观事物进行分类,以确定事物的类别。它的特点是已经掌握了历史上每个类别的若干样本,总结出分类的规律性,建立判别公式。当遇到新的事物时,只要根据总结出来的判别公式,就能判别事物所属的类别。
da 的关键就在于建立判别函数。目前,统计学建立判别函数常用方法有:一是未知总体分布情况下,根据个体到各个总体的距离进行判别的距离判别函数;二是已知总体分布的前提下求得平均误判概率最小的分类判别函数,也称距离判别函数,通常称为贝叶斯(bayes)判别函数;三是未知总体分布或未知总体分布函数前提下的根据费歇(fisher) 准则得到的最优线性判别函数。
2.多元判别分析法(multivariate discriminant analysis)
多元判别分析法(MDA)是除美国外的其他国家使用最多的统计方法。多元线性判别分析法,可以具体为一般判别分析(不考虑变量筛选)和定量资料的逐步判别分析(考虑变量筛选)。但应用多元判别分析(MDA)有三个主要假设:变量数据是正态分布的;各组的协方差是相同的;每组的均值向量、协方差矩阵、先验概率和误判代价是已知的。
该种方法的不足之处是必须建立在大量的、可靠的历史统计数据的基础之上,这在发展中国家如中国是难以具备的前提条件。
3.logit 分析判别方法
logit 分析与判别分析法的本质差异在于前者不要求满足正态分布或等方差, 从而消除了MDA 模型的正态分布假定的局限性。其模型主要采用了logistic 函数。
该模型的问题在于当样本点存在完全分离时,模型参数的最大似然估计可能不存在,模型的有效性值得怀疑,因此在正态的情况下不满足其判别正确率高于判别分析法的结果。另外该方法对中间区域的判别敏感性较强,导致判别结果的不稳定。
4.神经网络分析法(artificial neural network,简称ANN)
神经网络分析法是从神经心理学和认知科学研究成果出发,应用数学方法发展起来的一种具有高度并行计算能力、自学能力和容错能力的处理方法。它能有效解决非正态分布、非线性的信用评估问题,其结果介于0与1之间,在信用风险的衡量下,即为违约概率。神经网络分析方法应用于信用风险评估的优点在于其无严格的假设限制且具有处理非线性问题的能力。Altman、Marco和Varetto(1994)在对意大利公司财务危机预测中应用了神经网络分析法;Coats及Fant(1993)Trippi采用神经网络分析法分别对美国公司和银行财务危机进行预测,取得较好效果。然而,要得到一个较好的神经网络结构,需要人为随机调试,需要耗费大量人力和时间,加之该方法结论没有统计理论基础,解释性不强,所以应用受到很大限制。
5.聚类分析法(cluster analysis)
聚类分析(cluster analysis)属于非参数统计方法。信用风险分析中它根据由借款人的指标计算出的在样本空间的距离,将其分类。这种方法一个主要优点是不要求总体的具体分布;可对变量采用名义尺度,次序尺度,因此该方法可用于定量研究,也可对现实中的无法用数值精确表述的属性进行分析。这很适用于信用风险分析中按照定量指标(盈利比、速动比等) 和定性指标(管理水平、信用等级等) 对并不服从一定分布特性的数据信息分类的要求。例如,Lundy运用该方法对消费贷款申请者的典型信用申请数据及年龄、职业、婚否、居住条件进行处理分成6类并对每类回归评分,它不仅将借款人进行有效的分类而且帮助商业银行确定贷款方式策略。
6.k近邻判别法(k-Nearest Neighbor)
k近邻判别法在一定距离概念下按照若干定量变量从样本中选取与确定向量距离最短k个样本为一组,适用于初始分布和数据采集范围限制较少时,减小了以函数形式表达内容的要求。另外,knn 通过将变量在样本整体范围内分为任意多决策区间,而近似样本分布。Tametal将之用于信用风险分析,取马氏距离,从流动性、盈利性、资本质量角度选出的19 个变量指标,对样本分类,经比较其分类结果的准确性不如lda、lg 以及神经网络。原因在于在同样的样本容量下,若对具体问题的确存在特定的参数模型并可能找出时,非参数方法不及参数模型效率高。
7.层次分析法(AHP)
该方法强调人的思维判断在决策过程中的作用,通过一定模式使决策思维过程规范化,它适用于定性与定量因素相结合、特别是定性因素起主导作用的问题,企业信用等级综合评价就是这种定性因素起主导作用的问题。AHP 法的基本步骤是:建立递阶层次结构,构造判断矩阵,求此矩阵的最大特征根及其对应的特征向量,确定权重,并进行一致性检验。
8.其他方法
此外还存在着其他众多的方法:probit 法、因子-logistic法、模糊数学方法、混沌法及突变级数法、灰关联熵、主成分分析综合打分法、主成分分析与理想点的结合方法、原蚁群算法、数据包络判别法等等。关于这些方法的应用,将在后面的实证部分进行探讨。

7. 求生物学 蚁群算法

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
6、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。

8. 如何用蚁群算法来计算固定时间内走更多的城市且路程最短

概念:蚁群算法(ant colony optimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值
其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序
应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内
引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.

9. 人工蜂群算法的matlab的编程详细代码,最好有基于人工蜂群算法的人工神经网络的编程代码

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。


参考下蚁群训练BP网络的代码。

10. 蚁群算法的介绍

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

阅读全文

与蚁群算法的有效性相关的资料

热点内容
命令方块指令冰封剑 浏览:784
android中so文件 浏览:276
手工用气球做的捏捏乐解压神器 浏览:196
app升级后就闪退怎么办 浏览:35
手表上的乐涂app怎么下载 浏览:721
程序员身上的六宗罪是什么 浏览:145
游戏编程精粹6 浏览:69
修复ie的命令 浏览:602
linux服务器怎么查看地址 浏览:65
底部异地持仓源码 浏览:105
加密应用手机 浏览:798
程序员考试考什么科目 浏览:485
程序员必备文档编辑 浏览:960
踩水果解压大全 浏览:634
什么是dk服务器在 浏览:461
nusoapphp下载 浏览:929
黑莓原生解压rar 浏览:956
百度解压缩在哪 浏览:788
硬解压卡怎么用 浏览:183
新买的联想服务器怎么配置 浏览:757