⑴ 几种常见的查找算法之比较
二分法平均查找效率是O(logn),但是需要数组是排序的。如果没有排过序,就只好先用O(nlogn)的预处理为它排个序了。而且它的插入比较困难,经常需要移动整个数组,所以动态的情况下比较慢。
哈希查找理想的插入和查找效率是O(1),但条件是需要找到一个良好的散列函数,使得分配较为平均。另外,哈希表需要较大的空间,至少要比O(n)大几倍,否则产生冲突的概率很高。
二叉排序树查找也是O(logn)的,关键是插入值时需要做一些处理使得它较为平衡(否则容易出现轻重的不平衡,查找效率最坏会降到O(n)),而且写起来稍微麻烦一些,具体的算法你可以随便找一本介绍数据结构的书看看。当然,如果你用的是c语言,直接利用它的库类型map、multimap就可以了,它是用红黑树实现的,理论上插入、查找时间都是O(logn),很方便,不过一般会比自己实现的二叉平衡树稍微慢一些。
⑵ 算法的时间复杂度是指什么
算法的时间复杂度是指该算法举虚枯所需要的计算工作量随问题规模增加而增加的趋势,也就是算法的运行时间与问题规模之间的关系。
1、算法时间复杂度的概念
算法时间复杂度是指在分析算法性能时,关注的是该算法的计算复杂程度。主要是根据算法中基本操作的执行次数来估算算法的效率。算法的时间复杂度在一定程度上衡量了算法的好坏,是在进行算法性能分析时的一项基本指标。
2、计算时间复杂度的方法
通过代码分析可以得出一个算法的时间复杂度,一般采用大O表示法。大O表示法是一种用于描述算法复杂度的表示方法。
用一个大O符号加上一个括号括起来的函数描述算法复杂度,在大O符号后面的函数里,n表示数据输入的总量,T(n)表示算法执行所需的时间复杂度函数。
5、总结:
算法的时间复杂度是分析算法效率的一种常用指标,可以通过大O记号表示算法需要执行的操作次数,常见类型包括常数时间复杂度、线性时间复杂度、对数时间复杂度、平方时间复杂度和指数时间复杂度。
在实际应用中,需要根据具体需求综合考虑时间复杂度和空间复杂度。
⑶ 算法的时间复杂度是指什么
就是对算法执行时所花时间的度量。一般为问题规模的函数。
计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。
算法复杂度分为时间复杂度和空间复杂度。其作用: 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间资源,因此复杂度分为时间和空间复杂度。
相关内容解释:
函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A)。那么这个关系式就叫函数关系式,简称函数。
简单来讲,对于两个变量x和y,如果每给定x的一个值,y都有唯一一个确定的值与其对应,那么我们就说y是x的函数。其中,x叫做自变量,y叫做因变量。