⑴ 请简述有限元法和有限差分法各自的优势是什么
有限元法应该是在差分法基础上建立起来的。
有限元法:对物理模型进行离散,网格划分不用规则,就是各种单元可以混合使用,所以写不出方程也可以求解。
差分法:划分的网格是规则的,对方程进行离散化,就是用很多个差分代替微分,用线性方程组代替微分方程的一种方法。
学地质应该不用太区了解 基本原理,要注重分析的过程,和看懂分析结果才重要,地质毕竟也是实际的工程领域。那些理论就让物理专业,力学专业的研究去吧。
⑵ 数值计算方法的主要研究对象有哪些其常用基本算法主要包括哪三个方面
数值计算方法的主要研究对象:研究各种数学问题的数值方法设计、分析、有关的数学理论和具体实现。其常用基本算法在数值分析中用到迭代法的情形会比直接法要多。例如像牛顿法、二分法、雅可比法、广义最小残量方法及共轭梯度法等等。在计算矩阵代数中,大型的问题一般会需要用迭代法来求解。
许多时候需要将连续模型的问题转换为一个离散形式的问题,而离散形式的解可以近似原来的连续模型的解,此转换过程称为离散化。
例如求一个函数的积分是一个连续模型的问题,也就是求一曲线以下的面积若将其离散化变成数值积分,就变成将上述面积用许多较简单的形状(如长方形、梯形)近似,因此只要求出这些形状的面积再相加即可。
(2)有限差分法是算法吗扩展阅读
数值分析也会用近似的方式计算微分方程的解,包括常微分方程及偏微分方程。
常微分方程往往会使用迭代法,已知曲线的一点,设法算出其斜率,找到下一点,再推出下一点的资料。欧拉方法是其中最简单的方式,较常使用的是龙格-库塔法。
偏微分方程的数值分析解法一般都会先将问题离散化,转换成有限元素的次空间。可以透过有限元素法、有限差分法及有限体积法,这些方法可将偏微分方程转换为代数方程,但其理论论证往往和泛函分析的定理有关。另一种偏微分方程的数值分析解法则是利用离散傅立叶变换或快速傅立叶变换。
⑶ 什么是有限元法和有限差分法
有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
有限差分方法(finite difference method)一种求偏微分(或常微分)方程和方程组定解问题的数值解的方法,简称差分方法。
(3)有限差分法是算法吗扩展阅读:
有限差分法(FDM)的起源,讨论其在静电场求解中的应用。以铝电解槽物理模型为例,采用FDM对其场域进行离散,使用MATLAB和C求解了各节点的电位。由此,绘制了整个场域的等位线和电场强度矢量分布。同时,讨论了加速收敛因子对超松弛迭代算法迭代速度的影响,以及具有正弦边界条件下的电场分布。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
⑷ 什么是有限差分算法
有限差分法(FDM)的起源,讨论其在静电场求解中的应用.以铝电解槽物理模型为例,采用FDM对其场域进行离散,使用MATLAB和C求解了各节点的电位.由此,绘制了整个场域的等位线和电场强度矢量分布.同时,讨论了加速收敛因子对超松弛迭代算法迭代速度的影响,以及具有正弦边界条件下的电场分布.
有限差分法
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
分类
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式
时域有限差分法在GIS局部放电检测中的应用
1 前言
GIS由于其占地面积小以及高度的可靠性被广泛应用,但也有因为固定微粒、自由微粒以及绝缘子内部缺陷而发生的绝缘故障。一般发生绝缘故障都伴随有局部放电发生,因而局部放电检测是诊断电力设备绝缘状况的有效方法之一。超高频局部放电检测方法因为具有强的抗干扰能力和故障点定位能力而受到制造厂家和研究部门的普遍关注,并且已有部分产品应用于现场。超高频局部放电检测方法一般直接检测出局部放电脉冲的时域信号或者频谱信号,因为不同的研究者所研制的检测用传感器的带宽和检测系统(内部传感器法和外部传感器法)不同,以及传感器和局部放电源的相对位置对检测结果的影响,检测所得结果存在较大差异,缺乏可比性,因此有必要对局部放电信号的传播规律进行研究。
时域有限差分(Finite-Difference Time-Domain)法最早是由KaneS.Yee在1966年提出的,是一种很有效的电磁场的数值计算方法,不需要用到位函数,是一种在时间域中求解的数值计算方法。这种方法被应用于天线技术、微波器件、RCS计算等方面。
本文借助时域有限差分法对252KV GIS内部局部放电所激发的电磁波传播进行仿真,并用外部传感器超高频局部放电检测方法在实验室对252kV GIS固定高压导体上的固定微粒局部放电信号进行实测,仿真结果和实验结果基本一致,为超高频局部放电检测结果提供了有效的理论依据。
2 时域有限差分法
时域有限差分法是一种在时域中求解的数值计算方法,求解电磁场问题的FDTD方法是基于在时间和空间域中对Maxwell旋度方程的有限差分离散化一以具有两阶精度的中心有限差分格式来近似地代替原来微分形式的方程。FDTD方法模拟空间电磁性质的参数是按空间网格给出的,只需给定相应空间点的媒质参数,就可模拟复杂的电磁结构。时域有限差分法是在适当的边界和初始条件下解有限差分方程,使电磁波的时域特性直接反映出来,直接给出非常丰富的电磁场问题的时域信息,用清晰的图像描述复杂的物理过程。网格剖分是FDTD方法的关键问题,Yee提出采用在空间和时间都差半个步长的网格结构,通过类似蛙步跳跃式的步骤用前一时刻的磁、电场值得到当前时刻的电、磁场值,并在每一时刻上将此过程算遍整个空间,于是可得到整个空间域中随时间变化的电、磁场值的解。这些随时间变化的电、磁场值是再用Fourier变换后变到相应频域中的解。
在各向同性媒质中,Maxwell方程中的两个旋度方程具有以下形式(式(1)~(2))。
式中,ε为媒质的介电常数;μ为媒质的磁导率;σ为媒质的电导率;σ*为媒质的等效磁阻率,它们都是空间和时间变量的函数。
在直角坐标系中,矢量式(1)~(2)可以展开成以下六个标量式。
为了用差分离散的代数式恰当地描述电磁场在空间的传播特性,Yee提出了Yee Cell结构,在这种结构中,每一磁场分量总有四个电场分量环绕,同样每一电场分量总有四个磁场分量环绕,Yee对和分量在网格单位上的分布情况如图1所示。为达到精度,Yee计算和时在时间上错开半个步长,用中心差商展开偏微分方程组,得到x轴方向电场和磁场FDTD迭代公式(式(9)~(10)),Y轴和z轴迭代公式与x轴迭代公式成对称形式(略)。
FDTD方法是Maxwell方程的一种近似求解方法,为了保证计算结果的可靠性,必须考虑差分离散所引起的算法稳定性和数值色散问题,时间步长和空间步长应满足(11)~(12)条件。
其中,δ=min(△x,△y,△z);υmax为电磁波在媒质中传播的最大相速;λmin为电磁波在媒质中的最小波长值。
式中△x,△y和△z分别是在x,y和z坐标方向的空间步长,△t是时间步长,ij和k和n是整数。
3 GIS局部放电电磁仿真和超高频检测
SF6气体绝缘的GIS中局部放电的脉冲持续时间极短,其波头时间仅几个ns。为了简化分析,将局部放电电流看成对称脉冲,一般用如下的Gaussian形状的脉冲模型来表示,根据式13和文献6本文仿真用局部放电源高斯脉冲的峰值电流取30mA,脉冲宽度取5ns,波形如图2所示。
GIS局部放电信号频带较宽,用于接收信号的传感器(天线)应该满足检测要求,本文采用超宽带(300MHz~3000MHz)自补结构的双臂平面等角螺旋天线,天线结构如图3所示。
该天线在一定频率范围内可以近似认为具有非频变天线的特性,因为GIS局放信号的频率是在一个范围内变化,对于不同频率的GIS局放信号,该天线的阻抗不随频率变化,可方便实现天线和传输线的阻抗匹配,避免波形畸变。用HP8753D网络分析仪对天线的驻波比进行测试,结果在300MHz~3000MHz的频率范围内驻波比小于2.0,根据电磁理论当驻波比小于2.0时可以不考虑驻波的影响,表明该平面等角螺旋天线在设计频率具有良好的频响特性,所测结果可靠。
超高频法把GIS看作同轴波导(如图4所示),局部放电产生的短脉冲沿轴向传播,传感器作为接收天线,接收局部放电所激发的电磁波。
本文针对252KV GIS内高压导体上φ0.05×lcm固定突起发生局部放电进行模拟,GIS内部高压导体外直径为10.2cm,外壳内直径为29.4cm,长度为4米。采用1×l×lcm网格进行剖分,边界用完全匹配层(PML)材料吸收边界,其中绝缘子相对介电常数取3.9。采用IMST Empire电磁仿真软件分别对图4的GIS发生局部放电时内部点1和外部点2处的信号进行仿真,仿真结果如图5所示。
图5(a)和(b)的仿真结果表明在GIS内部发生局部放电时,局部放电脉冲可以激发上升沿很陡的信号,由于其内部为不连续波导结构,电磁波在其内部将引起反射和复杂谐振,频率成分可高达GHz。另外,比较内部点1和外部点2处的仿真结果,内部点1处的信号幅值是外部点2处的两倍,表明信号可以从绝缘缝隙泄漏,但由于绝缘子和缝隙的影响幅值将明显发生衰减,并且信号在绝缘缝隙处发生的折射和散射,外部信号比内部信号复杂。图5(c)表明局部放电频带比较宽,可高达GHz,信号成分较为丰富。
采用外部传感器超高频局部放电检测系统对252KV GIS内高压导体φ0.05×1cm固定突起局部放电进行实测。由于局部放电信号比较微弱,加之高频信号传播过程中衰减较大,在测试系统中采用增益不低于20dB的宽带放大器。在实验过程中对空气中的局部放电高频信号进行衰减特性研究发现该检测系统有效检测范围为17米。在外部点2处(距离GIS外壳绝缘缝隙10cm)的检测结果如图6所示。比较图5(b)和图6表明,仿真结果和实测结果基本一致,这个结论为超高频局部放电检测结果提供了理论支持。
超高频局部放电检测方法已经表明是非常有效的局部放电检测方法,本文借用时域有限差分法从信号的时域特征出发来验证局部放电检测结果,但由于不同电压等级的GIS结构存在差异,以及故障微粒的状态不同,对检测结果都有影响,并且目前还没有找出超高频方法和传统检测方法之间的内在关系,有待进一步深入研究。
4 结论
时域有限差分法对GIS局部放电脉冲所激发的电磁波仿真结果表明,局部放电信号上升沿较陡,频率可达GHz;由于绝缘子以及绝缘缝隙的影响,使得同轴波导结构不连续,将产生很复杂的电磁波。
a.由于绝缘子以及绝缘缝隙的影响,使信号幅值发生明显衰减,外部信号的幅值是内部信号幅值的一半。
b.实验结果和仿真结果基本一致,进一步从理论上论证了超高频局部放电检测方法的有效性。
⑸ 美式期权没有明确的表达式,美式期权定价方法有哪些
引言:商品经济的快速发展,人们已经从古时候的以物换物,变成了现在的钱权购买交易。从2015年开始,中国的期权市场到了。期权交易及赢在中国普及,期权交易是指在未来一定时期可以买卖的权利是买方向卖方支付一定数量的权利金后拥有的,在当今市场上,主要有欧式期权和美式期权,下面和小编一起来看看美式期权定价方法有哪些?
三、有限差分法
有限差分法的是将衍生品的价格进行微分化处理改变,获得样品均数,再用平方的方法对微分方法进行求值,最初使用有限差分法到期权定价中。有限差分法可以很好的应用于欧式期权和美式期权定价中去。但是该方式的效用完全取决于期权的离散参数的展开,在期权数数增大时计算量非常大,数值量无法计算。
⑹ 1有限差分法主要解决哪几类问题 2差分格式主要有哪几种 3中间差分是怎么来的
微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。有限差分法求解偏微分方程的步骤如下:
1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
2、近似替代,即采用有限差分公式替代每一个格点的导数;
3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程(Leon,Lapis,George F.Pinder,1985)