导航:首页 > 源码编译 > 动态规划和粒子群算法区别

动态规划和粒子群算法区别

发布时间:2023-11-17 20:28:07

❶ 智能计算/计算智能、仿生算法、启发式算法的区别与关系

我一个个讲好了,
1)启发式算法:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度不一定事先可以预计。意思就是说,启发式算法是根据经验或者某些规则来解决问题,它求得的问题的解不一定是最优解,很有可能是近似解。这个解与最优解近似到什么程度,不能确定。相对于启发式算法,最优化算法或者精确算法(比如说分支定界法、动态规划法等则能求得最优解)。元启发式算法是启发式算法中比较通用的一种高级一点的算法,主要有遗传算法、禁忌搜索算法、模拟退火算法、蚁群算法、粒子群算法、变邻域搜索算法、人工神经网络、人工免疫算法、差分进化算法等。这些算法可以在合理的计算资源条件下给出较高质量的解。
2)仿生算法:是一类模拟自然生物进化或者群体社会行为的随机搜索方法的统称。由于这些算法求解时不依赖于梯度信息,故其应用范围较广,特别适用于传统方法难以解决的大规模复杂优化问题。主要有:遗传算法、人工神经网络、蚁群算法、蛙跳算法、粒子群优化算法等。这些算法均是模仿生物进化、神经网络系统、蚂蚁寻路、鸟群觅食等生物行为。故叫仿生算法。
3)智能计算:也成为计算智能,包括遗传算法、模拟退火算法、禁忌搜索算法、进化算法、蚁群算法、人工鱼群算法,粒子群算法、混合智能算法、免疫算法、神经网络、机器学习、生物计算、DNA计算、量子计算、模糊逻辑、模式识别、知识发现、数据挖掘等。智能计算是以数据为基础,通过训练建立联系,然后进行问题求解。
所以说,你接触的很多算法,既是仿生算法,又是启发式算法,又是智能算法,这都对。分类方法不同而已。

这次楼主不要再老花了哈!

❷ Python之动态规划算法

动态规划算法中是将复杂问题递归分解为子问题,通过解决这些子问题来解决复杂问题。与递归算法相比,动态编程减少了堆栈的使用,避免了重复的计算,效率得到显着提升。

先来看一个简单的例子,斐波那契数列.

斐波那契数列的定义如下。

斐波那契数列可以很容易地用递归算法实现:

上述代码,随着n的增加,计算量呈指数级增长,算法的时间复杂度是 。

采用动态规划算法,通过自下而上的计算数列的值,可以使算法复杂度减小到 ,代码如下。

下面我们再看一个复杂一些的例子。

这是小学奥数常见的硬币问题: 已知有1分,2分,5分三种硬币数量不限,用这些硬币凑成为n分钱,那么一共有多少种组合方法。

我们将硬币的种类用列表 coins 定义;
将问题定义为一个二维数组 dp,dp[amt][j] 是使用 coins 中前 j+1 种硬币( coins[0:j+1] )凑成总价amt的组合数。

例如: coins = [1,2,5]

dp[5][1] 就是使用前两种硬币 [1,2] 凑成总和为5的组合数。

对于所有的 dp[0][j] 来说,凑成总价为0的情况只有一种,就是所有的硬币数量都为0。所以对于在有效范围内任意的j,都有 dp[0][j] 为1。

对于 dp[amt][j] 的计算,也就是使用 coins[0:j+1] 硬币总价amt的组合数,包含两种情况计算:

1.当使用第j个硬币时,有 dp[amt-coins[j]][j] 种情况,即amt减去第j个硬币币值,使用前j+1种硬币的组合数;

2.当不使用第j个硬币时,有 dp[amt][j-1] 种情况,即使用前j种硬币凑成amt的组合数;

所以: dp[amt][j] = dp[amt - coins[j]][j]+dp[amt][j-1]

我们最终得到的结果是:dp[amount][-1]

上述分析省略了一些边界情况。

有了上述的分析,代码实现就比较简单了。

动态规划算法代码简洁,执行效率高。但是与递归算法相比,需要仔细考虑如何分解问题,动态规划代码与递归调用相比,较难理解。

我把递归算法实现的代码也附在下面。有兴趣的朋友可以比较一下两种算法的时间复杂度有多大差别。

上述代码在Python 3.7运行通过。

❸ 多目标优化算法

姓名:袁卓成;学号:20021210612; 学院:电子工程学院

转自 https://blog.csdn.net/weixin_43202635/article/details/82700342

【嵌牛导读】 本文介绍了各类多目标优化算法

【嵌牛鼻子】  多目标优化, pareto

【嵌牛提问】 多目标优化算法有哪些?

【嵌牛正文】

1)无约束和有约束条件;

2)确定性和随机性最优问题(变量是否确定);

3)线性优化与非线性优化(目标函数和约束条件是否线性);

4)静态规划和动态规划(解是否随时间变化)。

使多个目标在给定区域同时尽可能最佳,多目标优化的解通常是一组均衡解(即一组由众多 Pareto最优解组成的最优解集合 ,集合中的各个元素称为 Pareto最优解或非劣最优解)。

①非劣解——多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。

②Pareto最优解——无法在改进任何目标函数的同时不削弱至少一个其他目标函数。这种解称作非支配解或Pareto最优解。

多目标优化问题不存在唯一的全局最优解 ,过多的非劣解是无法直接应用的 ,所以在求解时就是要寻找一个最终解。

(1)求最终解主要有三类方法:

一是求非劣解的生成法,即先求出大量的非劣解,构成非劣解的一个子集,然后按照决策者的意图找出最终解;(生成法主要有加权法﹑约束法﹑加权法和约束法结合的混合法以及多目标遗传算法)

二为交互法,不先求出很多的非劣解,而是通过分析者与决策者对话的方式,逐步求出最终解;

三是事先要求决策者提供目标之间的相对重要程度,算法以此为依据,将多目标问题转化为单目标问题进行求解。

(2)多目标优化算法归结起来有传统优化算法和智能优化算法两大类。

传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。

智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。

两者的区别——传统优化技术一般每次能得到Pareo解集中的一个,而用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解(任一个目标函数值的提高都必须以牺牲其他目标函数值为代价的解集)。

①MOEA通过对种群 X ( t)执行选择、交叉和变异等操作产生下一代种群 X ( t + 1) ;

②在每一代进化过程中 ,首先将种群 X ( t)中的所有非劣解个体都复制到外部集 A ( t)中;

③然后运用小生境截断算子剔除A ( t)中的劣解和一些距离较近的非劣解个体 ,以得到个体分布更为均匀的下一代外部集 A ( t + 1) ;

④并且按照概率 pe从 A ( t + 1)中选择一定数量的优秀个体进入下代种群;

⑤在进化结束时 ,将外部集中的非劣解个体作为最优解输出。

NSGA一II算法的基本思想:

(1)首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群;

(2)其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群;

(3)最后,通过遗传算法的基本操作产生新的子代种群:依此类推,直到满足程序结束的条件。

非支配排序算法:

考虑一个目标函数个数为K(K>1)、规模大小为N的种群,通过非支配排序算法可以对该种群进行分层,具体的步骤如下:

通过上述步骤得到的非支配个体集是种群的第一级非支配层;

然后,忽略这些标记的非支配个体,再遵循步骤(1)一(4),就会得到第二级非支配层;

依此类推,直到整个种群被分类。

拥挤度 ——指种群中给定个体的周围个体的密度,直观上可表示为个体。

拥挤度比较算子:

设想这么一个场景:一群鸟进行觅食,而远处有一片玉米地,所有的鸟都不知道玉米地到底在哪里,但是它们知道自己当前的位置距离玉米地有多远。那么找到玉米地的最佳策略,也是最简单有效的策略就是是搜寻目前距离玉米地最近的鸟群的周围区域。

基本粒子群算法:

粒子群由 n个粒子组成 ,每个粒子的位置 xi 代表优化问题在 D维搜索空间中潜在的解;

粒子在搜索空间中以一定的速度飞行 , 这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整下一步飞行方向和距离;

所有的粒子都有一个被目标函数决定的适应值(可以将其理解为距离“玉米地”的距离) , 并且知道自己到目前为止发现的最好位置 (个体极值 pi )和当前的位置 ( xi ) 。

粒子群算法的数学描述 :

每个粒子 i包含为一个 D维的位置向量 xi = ( xi1, xi2, …, xiD )和速度向量 vi = ( vi1, vi2,…, viD ) ,粒子 i搜索解空间时 ,保存其搜索到的最优经历位置pi = ( pi1, pi2, …, piD ) 。在每次迭代开始时 ,粒子根据自身惯性和经验及群体最优经历位置 pg = ( pg1, pg2, …, pgD )来调整自己的速度向量以调整自身位置。

粒子群算法基本思想:

(1)初始化种群后 ,种群的大小记为 N。基于适应度支配的思想 ,将种群划分成两个子群 ,一个称为非支配子集 A,另一个称为支配子集 B ,两个子集的基数分别为 n1、n2 。

(2)外部精英集用来存放每代产生的非劣解子集 A,每次迭代过程只对 B 中的粒子进行速度和位置的更新 ;

(3)并对更新后的 B 中的粒子基于适应度支配思想与 A中的粒子进行比较 ,若 xi ∈B , ϖ xj ∈A,使得 xi 支配 xj,则删除 xj,使 xi 加入 A 更新外部精英集 ;且精英集的规模要利用一些技术维持在一个上限范围内 ,如密度评估技术、分散度技术等。

(4)最后 ,算法终止的准则可以是最大迭代次数 Tmax、计算精度ε或最优解的最大凝滞步数 Δt等。

❹ 什么是智能优化算法

群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:

Step1:设置参数,初始化种群;

Step2:生成一组解,计算其适应值;

Step3:由个体最有适应着,通过比较得到群体最优适应值;

Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;

各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。

(4)动态规划和粒子群算法区别扩展阅读

优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。

优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。

❺ 优化算法是什么

什么是智能优化算法 10分
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,相比之下,智能算浮速度快,应用性强。
传统优化算法和现代优化算法包括哪些.区别是什么
1. 传统优化算法一般是针对结构化的问题,有较为明确的问题和条件描述,如线性规划,二次规划,整数规划,混合规划,带约束和不带约束条件等,即有清晰的结构信息;而智能优化算法一般针对的是较为普适的问题描述,普遍比较缺乏结构信息。

2. 传统优化算法不少都属于凸优化范畴,有唯一明确的全局最优点;而智能优化算法针对的绝大多数是多极值问题,如何防止陷入局部最优而尽可能找到全局最优是采纳智能优化算法的根本原因:对于单极值问题,传统算法大部分时候已足够好,而智能算法没有任何优势;对多极值问题,智能优化算法通过其有效设计可以在跳出局部最优和收敛到一个点之间有个较好的平衡,从而实现找到全局最优点,但有的时候局部最优也是可接受的,所以传统算法也有很大应用空间和针对特殊结构的改进可能。

3. 传统优化算法一般是确定性算法,有固定的结构和参数,计算复杂度和收敛性可做理论分析;智能优化算法大多属于启发性算法,能定性分析却难定量证明,且大多数算法基于随机特性,其收敛性一般是概率意义上的,实际性能不可控,往往收敛速度也比较慢,计算复杂度较高。

最新的优化算法是什么?
这个范围太广了吧?列出来一篇文献综述都列不完
多目标优化算法的多目标是什么意思
多目标优化的本质在于,大多数情况下,某目标的改善可能引起其他目标性吵灶能的降低,同时使多个目标均达到最优是不可能的,只能在各目标之间进行协调权衡和折中处理,使所有目标函数尽可能达到最优,而且问题的最优解由数量众多,甚至无穷大的Pareto最优解组成。
编程中的优化算法问题
1. 算法优化的过程是学习思维的过程。学习数学实质上就是学习思维。也就是说数学教育的目的不仅仅是要让学生掌握数学知识(包括计算技能),更重要的要让学生学会数学地思维。算法多样化具有很大的教学价值,学生在探究算法多样化的过程中,培养了思维的灵活性,发展了学生的创造性。在认识算法多样化的教学价值的同时,我们也认识到不同算法的思维价值是不相等的。要充分体现算法多样化的教育价值,教师就应该积极引导学生优化算法,把优化算法的过程看作是又一次发展学生思维、培养学生能力的机会,把优化算法变成学生又一次主动建构的学习活动。让学生在优化算法的过程中,通过对各种算法的比较和分析,进行评价,不仅评价其正确升枝扮性——这样做对吗?而且评价其合理性——这样做有道理吗?还要评价其科学性——这样做是最好的吗?这样的优化过程,对学生思维品质的提高无疑是十分有用的,学生在讨论、交流和反思的择优过程中逐步学会“多中择优,优中择简”的数学思想方法。教师在引导学生算法优化的过程中,帮助学生梳理思维过程,总结学习方法,养成思维习惯,形成学习能力,长此以往学生的思维品质一定能得到很大的提高。2. 在算法优化的过程中培养学生算法优化搭厅的意识和习惯。意识是行动的向导,有些学生因为思维的惰性而表现出算法单一的状态。明明自己的算法很繁琐,但是却不愿动脑做深入思考,仅仅满足于能算出结果就行。要提高学生的思维水平,我们就应该有意识的激发学生思维和生活的联系,帮助他们去除学生思维的惰性,鼓励他们从多个角度去思考问题,然后择优解决;鼓励他们不能仅仅只关注于自己的算法,还要认真倾听他人的思考、汲取他人的长处;引导他们去感受各种不同方法的之间联系和合理性,引导他们去感受到数学学科本身所特有的简洁性。再算法优化的过程中就是要让学生感受计算方法提炼的过程,体会其中的数学思想方法,更在于让学生思维碰撞,并形成切合学生个人实际的计算方法,从中培养学生的数学意识,使学生能自觉地运用数学思想方法来分析事物,解决问题。这样的过程不仅是对知识技能的一种掌握和巩固,而且可以使学生的思维更开阔、更深刻。3. 算法优化是学生个体学习、体验感悟、加深理解的过程。算法多样化是每一个学生经过自己独立的思考和探索,各自提出的方法,从而在群体中出现了许多种算法。因此,算法多样化是群体学习能力的表现,是学生集体的一题多解,而不是学生个体的多种算法。而算法的优化是让学生在群体比较的过程中优化,通过交流各自得算法,学生可以互相借鉴,互相吸收,互相补充,在个体感悟的前提下实施优化。因为优化是学生对知识结构的再构建过程,是发自学生内心的行为和自主的活动。但是,在实施算法最优化教学时应给学生留下一定的探索空间,以及一个逐渐感悟的过程。让学生在探索中感悟,在比较中感悟,在选择中感悟。这样,才利于发展学生独立思考能力和创造能力。4. 优化算法也是学生后继学习的需要。小学数学是整个数学体系的基础,是一个有着严密逻辑关系的子系统。算法教学是小学数学教学的一部分,它不是一个孤立的教学点。从某一教学内容来说,也许没有哪一种算法是最好的、最优的,但从算法教学的整个系统来看,必然有一种方法是最好的、最优的,是学生后继学习所必需掌握的。在算法多样化的过程中,当学生提出各种算法后,教师要及时引导学生进行比较和分析,在比较和分析的过程中感受不同策略的特点,领悟不同方法的算理,分析不同方法的优劣,做出合理的评价,从而选择具有普遍意义的、简捷的、并有利于后继学习的最优方法。5. 优化也是数学学科发展的动力。数学是一门基础学科,是一门工具学科,它的应用十分广泛。数学之所以有如此广泛的应用......>>
现在哪些智能优化算法比较新
智能优化算法是一种启发式优化算法,包括遗传算法、蚁群算法、禁忌搜索算法、模拟退火算法、粒子群算法等。·智能优化算法一般是针对具体问题设计相关的算法,理论要求弱,技术性强。一般,我们会把智能算法与最优化算法进行比较,

最新的智能优化算法有哪些呢,论文想研究些新算法,但是不知道哪些算法...

答:蚁群其实还是算比较新的。 更新的也只是这些算法的最后改进吧。演化算法就有很多。随便搜一篇以这些为标题,看06年以来的新文章就可以了。 各个领域都有的。否则就是到极限,也就没有什么研究前景了。
算法实现函数优化是什么意思
比如给一个函数 f(x1,x2)=x1^2+x2^2,求这个函数最小数值。。。

数学上,我们一般都是求偏导,然后一堆的,但是算法上,我们只要使用梯度下降,几次迭代就可以解决问题。。。
优化算法停止条件是什么?
适应度越大,解越优。

判断是否已得到近似全局最优解的方法就是遗传算法的终止条件。 在最大迭代次数范围内可以选择下列条件之一作为终止条件:

1. 最大适应度值和平均适应度值变化不大、趋于稳定;

2. 相邻GAP代种群的距离小于可接受值,参考“蒋勇,李宏.改进NSGA-II终止判断准则[J].计算机仿真.2009. Vol.26 No.2”
智能优化算法中cell是什么意思
智能优化主要是用来求最优解的,通过多次迭代计算找出稳定的收敛的最优解或近似最优解,例如复杂的单模态或多模态函数的求最值问题。

阅读全文

与动态规划和粒子群算法区别相关的资料

热点内容
cad安装卡在解压 浏览:615
编程精灵g540 浏览:256
手机文档解压之后解压包去哪儿了 浏览:923
java中网络编程重要吗 浏览:683
如何登录别人的服务器 浏览:626
调度系统软件python 浏览:205
微信大转盘抽奖源码 浏览:497
压缩机损坏的表现 浏览:862
同步数据服务器怎么用 浏览:634
163邮箱服务器的ip地址 浏览:50
服务器跟域是什么 浏览:128
rails启动命令 浏览:465
logistic命令怎么用 浏览:738
c语言点滴pdf 浏览:747
linuxrtc编程 浏览:258
linux打包并压缩命令 浏览:644
aes加密的证书格式 浏览:99
oracledbcalinux 浏览:844
酬勤任务app怎么被特邀 浏览:199
android应用文件夹 浏览:1002