1. 图片处理-opencv-10.图像锐化与边缘检测
Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。
Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用3 3模板对区域内的像素值进行计算,而Robert算子的模板为2 2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像。
dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])
RSobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘。Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓。Sobel算子的边缘定位更准确,常用于噪声较多、灰度渐变的图像。
Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息。因为Sobel算子结合了高斯平滑和微分求导(分化),因此结果会具有更多的抗噪性,当对精度要求不是很高时,Sobel算子是一种较为常用的边缘检测方法。
dst = Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])
在进行Sobel算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示
dst = convertScaleAbs(src[, dst[, alpha[, beta]]])
拉普拉斯(Laplacian)算子是n维欧几里德空间中的一个二阶微分算子,常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素,基本流程是:判断图像中心像素灰度值与它周围其他像素的灰度值,如果中心像素的灰度更高,则提升中心像素的灰度;反之降低中心像素的灰度,从而实现图像锐化操作。在算法实现过程中,Laplacian算子通过对邻域中心像素的四方向或八方向求梯度,再将梯度相加起来判断中心像素灰度与邻域内其他像素灰度的关系,最后通过梯度运算的结果对像素灰度进行调整。
Laplacian算子分为四邻域和八邻域,四邻域是对邻域中心像素的四方向求梯度,八邻域是对八方向求梯度。当邻域内像素灰度相同时,模板的卷积运算结果为0;当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。
dst = Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])
由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个33的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显。Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3*3滤波器实现图像边缘提取更推荐使用Scharr算子
Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是配合Sobel算子的运算而存在的。Scharr算子的函数原型如下所示,和Sobel算子几乎一致,只是没有ksize参数.
dst = Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]])
Canny边缘检测算子(多级边缘检测算法)是一种被广泛应用于边缘检测的标准算法,其目标是找到一个最优的边缘检测解或找寻一幅图像中灰度强度变化最强的位置。最优边缘检测主要通过低错误率、高定位性和最小响应三个标准进行评价。
Canny算子的实现步骤如下:
edges = Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]])
LOG(Laplacian of Gaussian)边缘检测算子也称为Marr&Hildreth算子,它根据图像的信噪比来求检测边缘的最优滤波器。该算法首先对图像做高斯滤波,然后再求其拉普拉斯(Laplacian)二阶导数,根据二阶导数的过零点来检测图像的边界,即通过检测滤波结果的零交叉(Zero crossings)来获得图像或物体的边缘。
LOG算子该综合考虑了对噪声的抑制和对边缘的检测两个方面,并且把Gauss平滑滤波器和Laplacian锐化滤波器结合了起来,先平滑掉噪声,再进行边缘检测,所以效果会更好。 该算子与视觉生理中的数学模型相似,因此在图像处理领域中得到了广泛的应用。它具有抗干扰能力强,边界定位精度高,边缘连续性好,能有效提取对比度弱的边界等特点。
2. canny算法的算法的实现步骤
Canny边缘检测算法可以分为以下5个步骤: 应用高斯滤波来平滑图像,目的是去除噪声 找寻图像的强度梯度(intensity gradients) 应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是) 应用双阈值的方法来决定可能的(潜在的)边界 利用滞后技术来跟踪边界 1. 图像平滑(去噪声)
任何边缘检测算法都不可能在未经处理的原始数据上很好地工作,所以第一步是对原始数据与高斯 mask 作卷积,得到的图像与原始图像相比有些轻微的模糊(blurred)。这样,单独的一个像素噪声在经过高斯平滑的图像上变得几乎没有影响。以下为一个5X5高斯滤波器(高斯核,标准差delta=1.4),其中A为原始图像,B为平滑后的图像。
2. 寻找图像中的强度梯度
Canny算法的基本思想是找寻一幅图相中灰度强度变化最强的位置。所谓变化最强,即指梯度方向。平滑后的图像中每个像素点的梯度可以由Sobel算子(一种卷积运算)来获得(opencv中有封装好的函数,可以求图像中每个像素点的n阶导数)。首先,利用如下的核来分别求得沿水平(x)和垂直(y)方向的梯度G_X和G_Y。
K_{GX} = [-1 0 1 ; -2 0 2 ; -1 0 1], K_{GY} = {1 2 1 ; 0 0 0 ; -1 -2 -1}
之后便可利用公式来求得每一个像素点的梯度度量值(gradient magnitude,可能翻译得不准确)。
,有时为了计算简便,也会使用G_X和G_Y的无穷大范数来代替二范数。把平滑后的图像中的每一个点用G代替,可以获得如下图像。从下图可以看出,在变化剧烈的地方(边界处),将获得较大的梯度度量值G,对应的颜色为白色。然而,这些边界通常非常粗,难以标定边界的真正位置。为了做到这一点(参考非极大抑制Non-maximum suppression一节),还必须存储梯度方向,其公式如下图所示。也就是说在这一步我们会存数两块数据,一是梯度的强度信息,另一个是梯度的方向信息。
3. 非极大抑制Non-maximum suppression
这一步的目的是将模糊(blurred)的边界变得清晰(sharp)。通俗的讲,就是保留了每个像素点上梯度强度的极大值,而删掉其他的值。对于每个像素点,进行如下操作:
a) 将其梯度方向近似为以下值中的一个(0,45,90,135,180,225,270,315)(即上下左右和45度方向)
b) 比较该像素点,和其梯度方向正负方向的像素点的梯度强度
c) 如果该像素点梯度强度最大则保留,否则抑制(删除,即置为0)
为了更好的解释这个概念,看下图。
图中的数字代表了像素点的梯度强度,箭头方向代表了梯度方向。以第二排第三个像素点为例,由于梯度方向向上,则将这一点的强度(7)与其上下两个像素点的强度(5和4)比较,由于这一点强度最大,则保留。处理后效果如下图所示。
上图中,可以想象,边界处的梯度方向总是指向垂直于边界的方向,即最后会保留一条边界处最亮的一条细线。
4.双阈值(Double Thresholding)
经过非极大抑制后图像中仍然有很多噪声点。Canny算法中应用了一种叫双阈值的技术。即设定一个阈值上界和阈值下界(opencv中通常由人为指定的),图像中的像素点如果大于阈值上界则认为必然是边界(称为强边界,strong edge),小于阈值下界则认为必然不是边界,两者之间的则认为是候选项(称为弱边界,weak edge),需进行进一步处理。经过双阈值处理的图像如下图所示
上图中右侧强边界用白色表示,弱边界用灰色表示。
5.利用滞后的边界跟踪
这里就不细作解释了。大体思想是,和强边界相连的弱边界认为是边界,其他的弱边界则被抑制。
以上内容均翻译自参考文献【4】
上一个网络版本:
图像中的边缘可能会指向不同的方向,所以 Canny 算法使用 4 个 掩模(mask) 检测水平、垂直以及对角线方向的边缘。原始图像与每个 mask 所作的卷积都存储起来。对于每个点我们都标识在这个点上的最大值以及生成的边缘的方向。这样我们就从原始图像生成了图像中每个点亮度梯度图以及亮度梯度的方向。以下两个公式分别求取高斯滤波后图像的梯度幅值及其方向的表达式。这一步,也叫称为非极大抑制(Non-maximum suppression)。
3. 在图像中跟踪边缘
较高的亮度梯度比较有可能是边缘,但是没有一个确切的值来限定多大的亮度梯度是边缘多大又不是,所以 Canny 使用了滞后阈值。
滞后阈值(Hysteresis thresholding) 需要两个阈值,即高阈值与低阈值。假设图像中的重要边缘都是连续的曲线,这样我们就可以跟踪给定曲线中模糊的部分,并且避免将没有组成曲线 的噪声像素当成边缘。所以我们从一个较大的阈值开始,这将标识出我们比较确信的真实边缘,使用前面导出的方向信息,我们从这些真正的边缘开始在图像中跟踪 整个的边缘。在跟踪的时候,我们使用一个较小的阈值,这样就可以跟踪曲线的模糊部分直到我们回到起点。
一旦这个过程完成,我们就得到了一个二值图像,每点表示是否是一个边缘点。
一个获得亚像素精度边缘的改进实现是在梯度方向检测二阶方向导数的过零点,它在梯度方向的三阶方向导数满足符号条件。
滞后阈值也可以用于亚像素边缘检测。
3. EmguCV学习 与opencv的区别和联系
openCV是因特尔的一个开源的视觉库,里面几乎
包含了所有的图像处理的经典算法,并且采用C和少量的C++编写,运行效率很高,对于做图像处理这方面工作的,认识opencv是必须的工作。不过
opencv有个很大的不足,这在于它几乎没有提供gui这方面接口,很难满足目前应用程序开发的需要,而万恶的MFC框架丑陋的界面也成为了我的噩
梦,MFC与opencv和界面优化几乎让我在图像处理这一块儿无法动弹。
C#
是.net平台上的明星语言,可以很容易做出漂亮的界面。EmguCV是将opencv封装的一个.net库可以被VC++,VC#,VB.net调用。
网上对于EmguCV的介绍很少,不是因为它没用,而是因为它的使用方法几乎和opencv一摸一样,opencv的资料完全可以直接用于EmguCV。
不过不少新手在使用EmguCV在使用几次之后便放弃。这有以下几个原因:
1.
舆论影响,很多人都说C#的运行效率低,采用C/C++,opencv是C和C++编写的,理所当然应该在VC++中运行,图像处理又是一个计算量很大的
工作,C#不行。C#运行效率肯定比C/C++差,但是采用混合编程的方法就可以啦,用C#的框架和运行机制,计算交给C就好啦。EmguCV很多处理函
数都是采用托管调用opencv。这个在EmguCV的安装包里可以看到,里面含有所有Opencv的dll。
2.
缺少资料,学习受挫而放弃(我放弃这个大概有半年)。不得不承认EmguCV方面的学习资料实在是太少啦。很多时候出现问题,在网上基本上找不到答案。而
且EmguCV前期版本对opencv封装不全面,很多基本的函数没有被封装,使用起来很不方便,网上很多人以讹传讹,编写很困难。不过使用2.3版本就
没有这个问题,opencv基本函数都得到了很好的封装。opencv图像处理的函数都封装在cvInvoke中
而Image<>结构是连接opencv与emgucv的重要桥梁。其中C#的Intptr类型可以很好地传递IplImage*指针结构,下面我用一个实验来验证我的判断。
创建一个winform工程,添加一个button和picturebox控件
添加如下代码
Capture cam;
private void btopen_Click(object sender, EventArgs e)
{
cam = new Capture();
Application.Idle += new EventHandler(processframe);
}
private void processframe(object sender, EventArgs arg)
{
Image<Bgr, Byte> frame = cam.QueryFrame();
Image<Gray,Byte> Ecanny=frame.Convert<Gray,Byte>();
CvInvoke.cvCanny(Ecanny.Ptr, Ecanny.Ptr, 50, 150, 3);
//cvCanny是opencv中常用的函数,原本的参数应该是IplImage*类型,这里使用Intpr代替,即Ecanny.ptr
pictureBox1.Image = Ecanny.Bitmap;
}
运行结果如下
当然如果只是简单的canny算法,使用EmguCV封装的结构Image<>更加简单,将代码如下图所示修改
运行结果如下图所示
上述实验表明,EmguCV可以很好地连接C#与opencv,能够弥补opencv在gui这方面的不足,有利于机器视觉开发者得工作
4. 3种python3的canny边缘检测之静态,可调节和自适应
先看高级版的python3的canny的自适应边缘检测:
内容:
1 canny的边缘检测的介绍。
2 三种方法的canny的边缘检测,由浅入深地介绍:固定值的静态,可自调节的,自适应的。
说明:
1 环境:python3.8、opencv4.5.3和matplotlib3.4.3。
2 图片:来自品阅网正版免费图库。
3 实现自适应阈值的canny边缘检测的参考代码和文章:
上述的代码,本机均有报错,故对代码进行修改,注释和运行。
初级canny:
1 介绍:opencv中给出了canny边缘检测的接口,直接调用:
即可得到边缘检测的结果ret,其中,t1,t2是需要人为设置的阈值。
2 python的opencv的一行代码即可实现边缘检测。
3 Canny函数及使用:
4 Canny边缘检测流程:
去噪 --> 梯度 --> 非极大值抑制 --> 滞后阈值
5 代码:
6 操作和过程:
7 原图:
8 疑问:
ret = cv2.canny(img,t1,t2),其中,t1,t2是需要人为设置的阈值,一般人怎么知道具体数值是多少,才是最佳的呀?所以,这是它的缺点。
中级canny:
1 中级canny,就是可调节的阈值,找到最佳的canny边缘检测效果。
2 采用cv2.createTrackbar来调节阈值。
3 代码:
4 操作和效果:
5 原图:
高级canny:
1 自适应canny的算法:
ret = cv2.canny(img,t1,t2)
即算法在运行过程中能够自适应地找到较佳的分割阈值t1,t2。
2 文件结构:
3 main.py代码:
4 dog.py代码:
5 bilateralfilt.py代码:
6 原图:
7 效果图:本文第一个gif图,此处省略。
小结:
1 本文由浅入深,总结的很好,适合收藏。
2 对于理解python的opencv的canny的边缘检测,很有帮助。
3 本文高级版canny自适应的算法参考2篇文章,虽然我进行代码的删除,注释,修改,优化等操作,故我不标注原创,对原作者表达敬意。
4 自己总结和整理,分享出来,希望对大家有帮助。
5. 如何利用opencv实现彩色图像边缘检测算法
在opencv中显示边缘检测很简单,只需调用一个cvCanny函数,其使用的是Canny算法来实现对图像的边缘检测.
函数原型为:
void cvCanny( const CvArr* image,CvArr* edges,double threshold1,double threshold2, int aperture_size=3 );
第一个参数为待检测的图像,注意一点,其必须是灰度图.
第二个参数为输出的边缘图,其也是一个灰度图.
后三个参数与Canny算法直接相关,threshold1和threshold2 当中的小阈值用来控制边缘连接,大的阈值用来控制强边缘的初始分割,aperture_size算子内核大小,可以去看看Canny算法.
从彩色图到灰度图需要使用到cvCvtColor函数,其接受三个参数,第一为输入,第二为输出,第三个为转换的标识,我们这边是RGB到GRAY,使用的是CV_RGB2GRAY.
参考demo代码如下:
#include <iostream>
#include <string>
#include <sstream>
#include <opencv/cv.h>
#include <opencv/highgui.h>
using namespace std;
int String2int(const string& str_)
{
int _nre = 0;
stringstream _ss;
_ss << str_;
_ss >> _nre;
return _nre;
}
void DoCanny(const string& strFileName_)
{
//原彩色图片
IplImage* _pIplImageIn = cvLoadImage(strFileName_.data());
if (_pIplImageIn == NULL)
{
return;
}
//彩色图片转换成灰度图放置的图片
IplImage* _pIplImageCanny = cvCreateImage(cvGetSize(_pIplImageIn), _pIplImageIn->depth, 1);
cvCvtColor(_pIplImageIn, _pIplImageCanny, CV_RGB2GRAY);//CV_RGB2GRAY将rgb图转成灰度图
//只有边缘路径的图片
IplImage* _pIplImageOut = cvCreateImage(cvGetSize(_pIplImageIn), IPL_DEPTH_8U, 1);
//边缘检测只能作用于灰度图
if (_pIplImageCanny->nChannels != 1)
{
return;
}
//边缘检测操作
cvCanny(_pIplImageCanny, _pIplImageOut, 1, 110, 3);
cvNamedWindow("Src");
cvShowImage("Src", _pIplImageIn);
cvNamedWindow("Canny");
cvShowImage("Canny", _pIplImageOut);
cvWaitKey(0);
cvReleaseImage(&_pIplImageIn);
cvReleaseImage(&_pIplImageCanny);
cvReleaseImage(&_pIplImageOut);
cvDestroyWindow("Src");
cvDestroyWindow("Canny");
}
int main(int argc, char* argv[])
{
if (argc < 2)
{
cout << "You should give the filename of picture!" << endl;
return -1;
}
DoCanny(argv[1]);
return 0;
}