导航:首页 > 源码编译 > 进程优先数调动算法java

进程优先数调动算法java

发布时间:2023-11-24 18:15:29

⑴ )用C语言(或其它语言,如java编程实现对N个进程采用某种进程调度算法(如动态优先权调度

公众:类PrivilegeProcess {
公共静态无效的主要(字串[] args){

MyQueue的MyQueue的新MyQueue的();/ /声明队列

印刷电路板[PCB = {新的PCB(001 ,8,1),新的PCB(002,7,9),新的PCB(003,3,8),新的PCB(004,1,7),新的PCB(005,7,4)};
> PCB段=新的PCB();

(INT I = 0; <pcb.length; + +){/ /初始化先进行排序,选择排序这里使用的是高优先级的一线队

(J =我; <pcb.length; J + +){

(PCB [I]。特权<PCB [J]。特权){

段= PCB [1];

PCB [I] = PCB [J];

PCB [J] =段;

}

}

}

体系。通过out.println(“入队后第一时间的进程的顺序:”);

(INT I = 0; <pcb.length; + +){

的System.out调用println(第一次入队#程序名称:“+ PCB [我]。名称+ totaltime:”+ PCB [I]。totaltime +“的”特权“+ PCB [我]。特权); }

();

myqueue.start(PCB);

}

}

类MyQueue的{

INT指数= 0;

PCB [] PC =新的PCB [5];

PCB [] PC1 =新的PCB [4];

PCB温度=新的PCB() BR />公共无效排队(PCB工艺){/ /排队算法

(指数== 5){

(“出界!”);

返回

}

PC [索引] =进程;

指数+ +;

}

公共:PCB DEQUEUE(){/ /出队算法(索引== 0)

返回空;

(INT I = 0; <pc1.length; + +){

PC1 [I] = PC [ +1];

}

指数 -

温度= PC [0];

(INT I = 0; <pc1.length; + +){ BR /> PC [I] = PC1 [I];

}

回报条件;

}

公共无效启动(PCB [] PC){/ /进程表算法

(PC [0]。isNotFinish ==真| | PC [1 isNotFinish ==真| | PC [2 isNotFinish ==真| | PC [3]。时isNotFinish ==真| | PC [4]。isNotFinish ==){

/ / *注:| |运算符都是假的,所有的表达式结果为假,否则真

(INT I = 0; <PC长度; + +){

PC [I]。运行(这一点); />} 的System.out.println();

(INT I = 0; <pc.length; + +){/ /处理每个运行一次运行的时间片的长度重新排序优先一旦

(J =我; <pc.length; J + +){

如果(PC [I]特权<PC [J]。特权){

温度= PC [I];

PC [I] = PC [J];

PC [J] =温度;

}

}

}

}

}

}

类PCB {/ /声明过程级

和int名,totaltime ,运行时特权;

布尔isNotFinish的;

公众PCB(){

}

公开PCB(名称,诠释totaltime特权){

this.name =的名称;/ /进程名

this.totaltime = totaltime ;/ /

this.privilege =特权;/ /总时间优先 this.runtime = 2 ;/ /时间片值是2

this.isNotFinish =真;/ /是否执行完成

(“初始值:程序名称:”+名+“totaltime:”+ totaltime +“特权”+特权);

System.out的。调用println();

}

MyQueue的MQ公共无效的run(){/ /处理的基础上实施的时间片算法

(totalTime> 1){ totaltime =运行;/ /总时间大于1,总时间=总时间 - 时间片

特权 -

(“程序名称:”+姓名+“ remaintime:“+ +”特权“+特权); totaltime

的} else if(totaltime == 1){

totaltime - ;/ /总时间为1时,执行时间为1
>特权 -

(“程序名称:”+姓名+“remaintime:”+ totaltime +“特权”+特权);

}其他{

isNotFinish =假;/ / 0,将isNotFinish标志设置为假

}

如果(isNotFinish ==真){br mq.deQueue();

mq.enQueue(本);

}

}
}

⑵ 优先级调度算法如何用JAVA实现

在多线程时,可以手动去设置每个线程的优先级setPriority(int newPriority)
更改线程的优先级。

⑶ 求进程调度算法

进程调度源程序如下:

jingchendiao.cpp

#include "stdio.h"

#include <stdlib.h>

#include <conio.h>

#define getpch(type) (type*)malloc(sizeof(type))

#define NULL 0

struct pcb { /* 定义进程控制块PCB */

char name[10];

char state;

int super;

int ntime;

int rtime;

struct pcb* link;

}*ready=NULL,*p;

typedef struct pcb PCB;

sort() /* 建立对进程进行优先级排列函数*/

{

PCB *first, *second;

int insert=0;

if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/

{

p->link=ready;

ready=p;

}

else /* 进程比较优先级,插入适当的位置中*/

{

first=ready;

second=first->link;

while(second!=NULL)

{

if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/

{ /*插入到当前进程前面*/

p->link=second;

first->link=p;

second=NULL;

insert=1;

}

else /* 插入进程优先数最低,则插入到队尾*/

{

first=first->link;

second=second->link;

}

}

if(insert==0) first->link=p;

}

}

input() /* 建立进程控制块函数*/

{

int i,num;

clrscr(); /*清屏*/

printf("\n 请输入进程号?");

scanf("%d",&num);

for(i=0;i<num;i++)

{

printf("\n 进程号No.%d:\n",i);

p=getpch(PCB);

printf("\n 输入进程名:");

scanf("%s",p->name);

printf("\n 输入进程优先数:");

scanf("%d",&p->super);

printf("\n 输入进程运行时间:");

scanf("%d",&p->ntime);

printf("\n");

p->rtime=0;p->state='w';

p->link=NULL;

sort(); /* 调用sort函数*/

}

}

int space()

{

int l=0; PCB* pr=ready;

while(pr!=NULL)

{

l++;

pr=pr->link;

}

return(l);

}

disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/

{

printf("\n qname \t state \t super \t ndtime \t runtime \n");

printf("|%s\t",pr->name);

printf("|%c\t",pr->state);

printf("|%d\t",pr->super);

printf("|%d\t",pr->ntime);

printf("|%d\t",pr->rtime);

printf("\n");

}
check() /* 建立进程查看函数 */

{

PCB* pr;

printf("\n **** 当前正在运行的进程是:%s",p->name); /*显示当前运行进程*/

disp(p);

pr=ready;

printf("\n ****当前就绪队列状态为:\n"); /*显示就绪队列状态*/

while(pr!=NULL)

{

disp(pr);

pr=pr->link;

}

}

destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/

{

printf("\n 进程 [%s] 已完成.\n",p->name);

free(p);

}

running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/

{

(p->rtime)++;

if(p->rtime==p->ntime)

destroy(); /* 调用destroy函数*/

else

{

(p->super)--;

p->state='w';

sort(); /*调用sort函数*/

}

}

main() /*主函数*/

{

int len,h=0;

char ch;

input();

len=space();

while((len!=0)&&(ready!=NULL))

{

ch=getchar();

h++;

printf("\n The execute number:%d \n",h);

p=ready;

ready=p->link;

p->link=NULL;

p->state='R';

check();

running();

printf("\n 按任一键继续......");

ch=getchar();

}

printf("\n\n 进程已经完成.\n");

ch=getchar();

}

⑷ 进程调度的方式有哪两种试列举至少4种进程调度算法。

进程调度的方式有非剥夺方式和剥夺方式。
非剥夺方式:
分派程序一旦把处理机分配给某进程后便让它一直运行下去,直到进程完成或发生某事件而阻塞时,才把处理机分配给另一个进程。
剥夺方式:
当一个进程正在运行时,系统可以基于某种原则,剥夺已分配给它的处理机,将之分配给其它进程。剥夺原则有:优先权原则、短进程优先原则、时间片原则。
进程调度算法:
1、先进先出算法(FIFO):
算法总是把处理机分配给最先进入就绪队列的进程,一个进程一旦分得处理机,便一直执行下去,直到该进程完成或阻塞时,才释放处理机。
举例:有三个进程P1、P2和P3先后进入就绪队列,它们的执行期分别是21、6和3个单位时间,对于P1、P2、P3的周转时间为21、27、30,平均周转时间为26。可见,FIFO算法服务质量不佳,容易引起作业用户不满,常作为一种辅助调度算法。
2、最短CPU运行期优先调度算法(SCBF--Shortest CPU Burst First):
该算法从就绪队列中选出下一个“CPU执行期最短”的进程,为之分配处理机。
举例:在就绪队列中有四个进程P1、P2、P3和P4,它们的下一个执行进程调度期分别是16、12、4和3个单位时间,P1、P2、P3和P4的周转时间分别为35、19、7、3,平均周转时间为16。该算法虽可获得较好的调度性能,但难以准确地知道下一个CPU执行期,而只能根据每一个进程的执行历史来预测。
3、时间片轮转法:
前几种算法主要用于批处理系统中,不能作为分时系统中的主调度算法,在分时系统中,都采用时间片轮转法。简单轮转法:系统将所有就绪进程按FIFO规则排队,按一定的时间间隔把处理机分配给队列中的进程。这样,就绪队列中所有进程均可获得一个时间片的处理机而运行。
4、多级反馈队列:
多级队列方法:将系统中所有进程分成若干类,每类为一级。多级反馈队列方式是在系统中设置多个就绪队列,并赋予各队列以不同的优先权。

⑸ 第三章 进程调度的几种方式

进程调度概念:操作系统必须为多个,吗进程可能有竞争的请求分配计算机资源。对处理器而言,可分配的资源是在处理器上的执行时间,分配途径是调度。调度功能必须设计成可以满足多个目标,包括公平、任何进程都不会饿死、有效地使用处理器时间和低开销。此外,调度功能可能需要为某些进程的启动或结束考虑不同的优先级和实时最后期限。

这些年以来,调度已经成为深入研究的焦点,并且已经实现了许多不同的算法。如今,调度研究的重点是开发多处理系统,特别是用于多线程的。

下面简介几种调度算法。

一、先来先服务和短作业(进程)优先调度算法

1.先来先服务调度算法

先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。

2.短作业(进程)优先调度算法

短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程优先(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。

二、高优先权优先调度算法

1.优先权调度算法的类型

为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入了最高优先权优先(FPF)调度算法。此算法常被用于批处理系统中,作为作业调度算法,也作为多种操作系统中的进程调度算法,还可用于实时系统中。当把该算法用于作业调度时,系统将从后备队列中选择若干个优先权最高的作业装入内存。当用于进程调度时,该算法是把处理机分配给就绪队列中优先权最高的进程,这时,又可进一步把该算法分成如下两种。

1) 非抢占式优先权算法

在这种方式下,系统一旦把处理机分配给就绪队列中优先权最高的进程后,该进程便一直执行下去,直至完成;或因发生某事件使该进程放弃处理机时,系统方可再将处理机重新分配给另一优先权最高的进程。这种调度算法主要用于批处理系统中;也可用于某些对实时性要求不严的实时系统中。

2) 抢占式优先权调度算法

在这种方式下,系统同样是把处理机分配给优先权最高的进程,使之执行。但在其执行期间,只要又出现了另一个其优先权更高的进程,进程调度程序就立即停止当前进程(原优先权最高的进程)的执行,重新将处理机分配给新到的优先权最高的进程。因此,在采用这种调度算法时,是每当系统中出现一个新的就绪进程i 时,就将其优先权Pi与正在执行的进程j 的优先权Pj进行比较。如果Pi≤Pj,原进程Pj便继续执行;但如果是Pi>Pj,则立即停止Pj的执行,做进程切换,使i 进程投入执行。显然,这种抢占式的优先权调度算法能更好地满足紧迫作业的要求,故而常用于要求比较严格的实时系统中,以及对性能要求较高的批处理和分时系统中。

2.高响应比优先调度算法

在批处理系统中,短作业优先算法是一种比较好的算法,其主要的不足之处是长作业的运行得不到保证。如果我们能为每个作业引入前面所述的动态优先权,并使作业的优先级随着等待时间的增加而以速率a 提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为:

由于等待时间与服务时间之和就是系统对该作业的响应时间,故该优先权又相当于响应比RP。据此,又可表示为:

由上式可以看出:

(1) 如果作业的等待时间相同,则要求服务的时间愈短,其优先权愈高,因而该算法有利于短作业。

(2) 当要求服务的时间相同时,作业的优先权决定于其等待时间,等待时间愈长,其优先权愈高,因而它实现的是先来先服务。

(3) 对于长作业,作业的优先级可以随等待时间的增加而提高,当其等待时间足够长时,其优先级便可升到很高,从而也可获得处理机。简言之,该算法既照顾了短作业,又考虑了作业到达的先后次序,不会使长作业长期得不到服务。因此,该算法实现了一种较好的折衷。当然,在利用该算法时,每要进行调度之前,都须先做响应比的计算,这会增加系统开销。

三、基于时间片的轮转调度算法

1.时间片轮转法

1) 基本原理

在早期的时间片轮转法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU 分配给队首进程,并令其执行一个时间片。时间片的大小从几ms 到几百ms。当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。

2.多级反馈队列调度算法

前面介绍的各种用作进程调度的算法都有一定的局限性。如短进程优先的调度算法,仅照顾了短进程而忽略了长进程,而且如果并未指明进程的长度,则短进程优先和基于进程长度的抢占式调度算法都将无法使用。而多级反馈队列调度算法则不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。在采用多级反馈队列调度算法的系统中,调度算法的实施过程如下所述。

(1) 应设置多个就绪队列,并为各个队列赋予不同的优先级。第一个队列的优先级最高,第二个队列次之,其余各队列的优先权逐个降低。该算法赋予各个队列中进程执行时间片的大小也各不相同,在优先权愈高的队列中,为每个进程所规定的执行时间片就愈小。例如,第二个队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍。

(2) 当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度。当轮到该进程执行时,如它能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列,……,如此下去,当一个长作业(进程)从第一队列依次降到第n队列后,在第n 队列便采取按时间片轮转的方式运行。

(3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1~(i-1)队列均空时,才会调度第i队列中的进程运行。如果处理机正在第i队列中为某进程服务时,又有新进程进入优先权较高的队列(第1~(i-1)中的任何一个队列),则此时新进程将抢占正在运行进程的处理机,即由调度程序把正在运行的进程放回到第i队列的末尾,把处理机分配给新到的高优先权进程。

⑹ java 里面,主线程的优先级可以设置吗

Thread类的setPriority(int level)方法设置线程的优先乱虚级。优先级别从穗埋1到10,1是最不重要的,10是最重要哗族燃的。不设置优先级将是默认值5.

⑺ 设计一个按优先数调度算法实现处理器调度的程序。 高手帮忙!!

#include <stdio.h>
#include <stdlib.h> //提供atoi()函数
#include <conio.c> //提供clrscr()函数
#define M 10 //字符串大小常量
#define N 3 //进程数常量
#define SLOT 2
typedef struct node{
char name[M];
int prio; //优先级
int round; //时间片长度
int cputime; //已经使用的cpu时间
int needtime;//需要多少cpu时间
int count; //计数器
char state; //进程的当前状态
struct node *next; //指向下一个进程
}PCB;

PCB *finish,*ready,*tail,*run;

void ShowHead(char *s1,char *s2);
int Menu_Select();
void Creat(int select);
void InsertPriority(PCB *q);
void InsertSlot(PCB *q);
void PrintOneProcess(int select,PCB *q);
void PrintAllProcess(int select);
void FirstIn();
void FIFODo(int select);
void PriorityDo(int select);
void SlotDo(int select);
void Quit();
main()
{
while(1)
{
clrscr();
switch(Menu_Select())
{
case 1:
Creat(1);
FIFODo(1);
printf("\n\n\t\t按回车键返回菜单...");
getchar();
getchar();
break;
case 2:
Creat(2);
PriorityDo(2);
printf("\n\n\t\t按回车键返回菜单...");
getchar();
getchar();
break;
case 3:
Creat(3);
SlotDo(3);
printf("\n\n\t\t按回车键返回菜单...");
getchar();
getchar();
break;
case 0:
Quit();
break;
}
}
}

/*打印每个界面的开头显示*/
void ShowHead(char *s1,char *s2)
{
printf("\t ==================%s========================\n\n",s1);
printf("\t\t\t\t%s\n\n",s2);
printf("\t ========================================================\n\n");
}

/*主菜单*/
int Menu_Select()
{
int choose;
char s[2];
clrscr();
printf("====================进程调度算法模拟程序=====================\n\n");
printf("\t\t 1.先进先出调度策略\n");
printf("\t\t 2.优先数调度策略\n");
printf("\t\t 3.时间片轮转调度策略\n");
printf("\t\t 0.退出系统\n\n");
printf("=============================================================\n\n");
do
{
printf("\n请输入你的选择(0-3):");
scanf("%s",s);
choose=atoi(s);
}while(choose<0 || choose>3);
return choose;
}

/*创建调度算法的链表*/
void Creat(int select)
{
PCB *p,*q; //q为就绪队列的最后一个结点
int i,time,rounds;
char na[M];
ready=NULL;
finish=NULL;
run=NULL;
if(select==1) //先进先出调度创建
{
printf("\nEnter name and time of process:\n");
for(i=1;i<=N;i++)
{
p=(PCB *)malloc(sizeof(PCB));
scanf("%s",na);
scanf("%d",&time);
strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
p->state='W';
p->next=NULL;
if(ready!=NULL) //就绪队列不为空
{
q->next=p;
q=p;
}
else //就绪队列为空
{
p->next=ready;
ready=p;
q=ready;
}
}
clrscr();
ShowHead("先进先出调度策略","FIFO dispatching algorithm ");
printf("\t\t name cputime needtime state\n");
PrintAllProcess(select); //打印出初始状态的信息
}
else if(select==2) //优先数调度创建
{
printf("\nEnter name and time of process:\n");
for(i=1;i<=N;i++)
{
p=(PCB *)malloc(sizeof(PCB));
scanf("%s",na);
scanf("%d",&time);
strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
p->state='W';
p->prio=50-time;
if(ready!=NULL) //就绪队列不为空的时候
InsertPriority(p);
else //就绪队列为空
{
p->next=ready;
ready=p;
}
}//end of for()
clrscr();
ShowHead("优先级调度策略","Priority dispatching algorithm ");
printf("\t\t name cputime needtime prio state\n");
PrintAllProcess(select); //打印出初始状态的信息
}//end of else if()
else if(select==3) //时间片轮转调度创建
{
printf("\nEnter name and the time of process:\n");
for(i=1;i<=N;i++)
{
p=(PCB *)malloc(sizeof(PCB));
scanf("%s",na);
scanf("%d",&time);
strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
p->count=0; //计数器
p->round=SLOT;
p->state='W';
if(ready!=NULL)
InsertSlot(p);
else
{
p->next=ready;
ready=p;
}
}
clrscr();
ShowHead("时间片轮转调度策略","Time slot dispatching algorithm ");
printf("\n\t\t name cputime needtime count slot state\n");
PrintAllProcess(select); //打印出初始状态的信息
}
run=ready; //从就绪队列取一个进程,使其运行,同时就绪队列的头指针后移
run->state='R';
ready=ready->next;
}

/*优先调度:把进程插入到合适的位置,就绪队列按优先级由高到低的顺序排列*/
void InsertPriority(PCB *q)
{
PCB *pre,*p;
int flag=1;
pre=NULL;
p=ready;
while(p!=NULL && flag)
{
if(p->prio>q->prio)
{
pre=p;
p=p->next;
}
else
flag=0;
}
if(pre==NULL)
{
q->next=ready;
ready=q;
}
else
{
pre->next=q;
q->next=p;
}
}

/*时间片轮转:把结点插入到就绪队列的末尾*/
void InsertSlot(PCB *q)
{
PCB *pre,*p;
pre=NULL;
p=ready;
while(p!=NULL)
{
pre=p;
p=p->next;
}
pre->next=q;
q->next=NULL; /*由于插入到队列的末尾,所以必须要使其的下一个结点为空值*/
}

/*打印一个信息*/
void PrintOneProcess(int select,PCB *q)
{
if(select==1)
printf("\t\t %-10s%-10d%-10d%c\n",q->name,q->cputime,q->needtime,q->state);
else if(select==2)
printf("\t\t %-10s%-10d%-10d%-10d%c\n",q->name,q->cputime,q->needtime,q->prio,q->state);
else if(select==3)
printf("\t\t %-10s%-10d%-10d%-10d%-10d%c\n",q->name,q->cputime,q->needtime,q->count,q->round,q->state);
}

/*将所有的进程打印出来,按运行,就绪,完成顺序打印*/
void PrintAllProcess(int select)
{
PCB *p;
if(run!=NULL)
PrintOneProcess(select,run);
p=ready;
while(p!=NULL)
{
PrintOneProcess(select,p);
p=p->next;
}
p=finish;
while(p!=NULL)
{
PrintOneProcess(select,p);
p=p->next;
}
}

/*把就绪队列的第一个进程调入运行*/
void FirstIn()
{
run=ready;
ready=ready->next;
run->state='R';
}

/*先进先出调度策略*/
void FIFODo(int select)
{
while(run!=NULL)
{

run->cputime=run->cputime+1;
run->needtime=run->needtime-1;
if(run->needtime==0) //进程执行结束
{
printf("\n\t\t name cputime needtime state\n");
run->next=finish;
finish=run;
run->state='F';
run=NULL;
if(ready!=NULL)
FirstIn();
PrintAllProcess(1);
}
}
}

/*优先级算法*/
void PriorityDo(int select)
{
while(run!=NULL)
{
printf("\n\t\t name cputime needtime prio state\n");
run->cputime=run->cputime+1;
run->needtime=run->needtime-1;
run->prio=run->prio-3;
if(run->needtime==0)
{
run->next=finish;
finish=run;
run->state='F';
run=NULL;
if(ready!=NULL)
FirstIn();
}
else if((ready!=NULL) && (run->prio < ready->prio))
{
run->state='W';
InsertPriority(run);
FirstIn();
}
PrintAllProcess(select);
}
}

/*时间片轮转算法*/
void SlotDo(int select)
{
while(run!=NULL)
{
printf("\n\t\t name cputime needtime count slot state\n");
run->count=run->count+1;
run->cputime=run->cputime+1;
run->needtime=run->needtime-1;
if(run->needtime==0) /*运行完成时*/
{
run->next=finish;
finish=run;
run->state='F';
run=NULL;
if(ready!=NULL)
FirstIn(); //就绪队列不为空,将就绪队列的第一个进程投入运行
}
else if(run->count==run->round) /*时间片已经到了,还未运行完成*/
{
run->count=0; //时间片
if(ready!=NULL)
{
run->state='W';
InsertSlot(run);
FirstIn();
}
}
PrintAllProcess(select); //打印本次的所有记录
}
}

void Quit()
{
char ch;
clrscr();
gotoxy(10,5);
printf("==========================================================\n\n");
printf(" Thank you for you using\n\n");
gotoxy(10,9);
printf("==========================================================\n\n");
gotoxy(13,15);

getchar();
printf("\n\t\tDo you really want to quit(y/Y or n/N):");
scanf("%c",&ch);
if(ch=='y' || ch=='Y')
{
printf("\n\t\t按任意键退出系统...");
getchar();
exit(0);
}

}

阅读全文

与进程优先数调动算法java相关的资料

热点内容
微信大转盘抽奖源码 浏览:495
压缩机损坏的表现 浏览:862
同步数据服务器怎么用 浏览:634
163邮箱服务器的ip地址 浏览:50
服务器跟域是什么 浏览:126
rails启动命令 浏览:465
logistic命令怎么用 浏览:738
c语言点滴pdf 浏览:747
linuxrtc编程 浏览:258
linux打包并压缩命令 浏览:644
aes加密的证书格式 浏览:99
oracledbcalinux 浏览:844
酬勤任务app怎么被特邀 浏览:199
android应用文件夹 浏览:1002
平面设计法则pdf 浏览:339
3d圆角命令怎么用 浏览:567
程序员买意外险还是重疾险 浏览:621
辽宁的dns服务器地址云空间 浏览:448
我的世界服务器断开后怎么连接 浏览:415
htmltopdfpython 浏览:77