⑴ 什么是算法
一、什么是算法
算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。算法常常含有重复的步骤和一些比较或逻辑判断。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。时间复杂度用“O(数量级)”来表示,称为“阶”。常见的时间复杂度有: O(1)常数阶;O(log2n)对数阶;O(n)线性阶;O(n2)平方阶。
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
[font class="Apple-style-span" style="font-weight: bold;" id="bks_etfhxykd"]算法 Algorithm [/font]
算法是在有限步骤内求解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,后者是操作实现的算法。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
算法的设计要求
1)正确性(Correctness)
有4个层次:
A.程序不含语法错误;
B.程序对几组输入数据能够得出满足规格要求的结果;
C.程序对精心选择的、典型的、苛刻的、带有刁难性的几组输入数据能够得出满足规格要求的结果;
D.程序对一切合法的输入数据都能产生满足规格要求的结果。
2)可读性(Readability)
算法的第一目的是为了阅读和交流;
可读性有助于对算法的理解;
可读性有助于对算法的调试和修改。
3)高效率与低存储量
处理速度快;存储容量小
时间和空间是矛盾的、实际问题的求解往往是求得时间和空间的统一、折中。
算法的描述 算法的描述方式(常用的)
算法描述 自然语言
流程图 特定的表示算法的图形符号
伪语言 包括程序设计语言的三大基本结构及自然语言的一种语言
类语言 类似高级语言的语言,例如,类PASCAL、类C语言。
算法的评价 算法评价的标准:时间复杂度和空间复杂度。
1)时间复杂度 指在计算机上运行该算法所花费的时间。用“O(数量级)”来表示,称为“阶”。
常见的时间复杂度有: O(1)常数阶;O(logn)对数阶;O(n)线性阶;O(n^2)平方阶
2)空间复杂度 指算法在计算机上运行所占用的存储空间。度量同时间复杂度。
时间复杂度举例
(a) X:=X+1 ; O(1)
(b) FOR I:=1 TO n DO
X:= X+1; O(n)
(c) FOR I:= 1 TO n DO
FOR J:= 1 TO n DO
X:= X+1; O(n^2)
“算法”一词最早来自公元 9世纪 波斯数学家比阿勒·霍瓦里松的一本影响深远的着作《代数对话录》。20世纪的 英国 数学家 图灵 提出了着名的图灵论点,并抽象出了一台机器,这台机器被我们称之为 图灵机 。图灵的思想对算法的发展起到了重要的作用。
算法是 计算机 处理信息的本质,因为 计算机程序 本质上是一个算法,告诉计算机确切的步骤来执行一个指定的任务,如计算职工的薪水或打印学生的成绩单。 一般地,当算法在处理信息时,数据会从输入设备读取,写入输出设备,可能保存起来以供以后使用。
这是算法的一个简单的例子。
我们有一串随机数列。我们的目的是找到这个数列中最大的数。如果将数列中的每一个数字看成是一颗豆子的大小 可以将下面的算法形象地称为“捡豆子”:
首先将第一颗豆子(数列中的第一个数字)放入口袋中。
从第二颗豆子开始检查,直到最后一颗豆子。如果正在检查的豆子比口袋中的还大,则将它捡起放入口袋中,同时丢掉原先的豆子。 最后口袋中的豆子就是所有的豆子中最大的一颗。
下面是一个形式算法,用近似于 编程语言 的 伪代码 表示
给定:一个数列“list",以及数列的长度"length(list)" largest = list[1] for counter = 2 to length(list): if list[counter] > largest: largest = list[counter] print largest
符号说明:
= 用于表示赋值。即:右边的值被赋予给左边的变量。
List[counter] 用于表示数列中的第 counter 项。例如:如果 counter 的值是5,那么 List[counter] 表示数列中的第5项。
<= 用于表示“小于或等于”。
⑵ 编程算法是什么
程序算法是对特定问题求解过程的描述,是指令的有限序列,每条指令完成一个或多个操作。通俗地讲,就是为解决某一特定问题而采取的具体有限的操作步骤。
在有限的操作步骤内完成。有穷性是算法的重要特性,任何一个问题的解决不论其采取什么样的算法,其终归是要把问题解决好。如果一种算法的执行时间是无限的,或在期望的时间内没有完成,那么这种算法就是无用和徒劳的,我们不能称其为算法。
相关信息:
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做T(n)=Ο(f(n));因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
⑶ 算法的时间复杂度仅与问题的规模有关
算法的时间复杂度在大部分题库中的答案是选择与问题规模有关的那个选项,同时干扰项往往是计算机硬件性能,编译程序质量,程序设计语言等等。(直接回答)
其他版本的书中还提到与-待处理数据的初态有关,例如是否已经有序。(补充回答)
算法的时间复杂度,即效率,通常只与算法本身的性质有关,算法本身的性质又包括其涉及的问题规模,还有选择的何种算法策略。(个人经验)
算法的时间复杂度,即基本操作重复执行的次数,是问题规模n的某个函数f(n),算法的时间量度记作T(n) = O(f(n));它表示随着问题规模n的增大,算法执行的时间的增长率和f(n)的增长率相同,称作渐近时间复杂度,也称时间复杂度。(严蔚敏老师书上的相关解释)
⑷ 算法里的输入规模是什么
不知道你说的是哪种算法,给你个例子吧。
运算量 n! 2^n n^3 n^2 nlogn n
最大规模 11 26 464 10000 4.5*10^6 1000000000
速度扩大两倍 11 27 587 14142 8.6*10^6 2000000000
这个表给出了机器速度扩大两倍后,算法所能解决的规模的对比。可以看出,n!和2n不仅能解决的问题规模十分小,而且增长缓慢;最快的nlogn和n算法不仅解决问题
的规模大,而且增长快。我们把渐进时间复杂为多项式的算法称为多项式时间算法(polymonial-time algorithm),也称有效算法;而n!或者2^n这样低效算法称为指数时间算法(exponential-time algorithm).
尽管如此,考虑到目前主流机器的执行速度,多数算法竞赛所选取的数据规模基本符合此表。例如,一些指明n<=8的题目,可能n!的算法已经足够,n<=20的题目需要2^n的算法,而n<=300的题目可能就需要用至少n^3的多项式算法.
⑸ 数据结构中评价算法的两个重要指标是什么
数据结构中评价算法的两个重要指标是时间复杂度和空间复杂度。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
1、时间复杂度:
算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。
2、空间复杂度:
算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
(5)算法的问题规模扩展阅读:
评估算法效率的方法:
1、事后统计方法
这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。
2、事前分析估算方法
在计算机程序编写前,依据统计方法对算法进行估算。经过总结,可以发现一个高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:算法采用的策略、编译产生的代码质量、问题的输入规模、机器执行指令的速度。
参考资料来源:网络-算法
⑹ c语言中什么是算法有哪些描述算法的例子
1、有穷性(有限性)。任何一种提出的解题方法都是在有限的操作步骤内可以完成的。
如果在有限的操作步骤内完不成,得不到结果,这样的算法将无限的执行下去,永远不会停止。除非手动停止。例如操作系统就不具有有穷性,它可以一直运行。
2、一个算法应该具有以下七个重要的特征:
1)有穷性(finiteness)
算法的有穷性是指算法必须能在执行有限个步骤之后终止
2)确切性(definiteness)
算法的每一步骤必须有确切的定义;
3)输入项(input)
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4)输出项(output)
一个算法有一个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的;
5)可行性(effectiveness)
算法中执行的任何计算步都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成;
6)
高效性(high
efficiency)
执行速度快,占用资源少;
7)
健壮性(robustness)
健壮性又称鲁棒性,是指软件对于规范要求以外的输入情况的处理能力。所谓健壮的系统是指对于规范要求以外的输入能够判断出这个输入不符合规范要求,并能有合理的处理方式。