导航:首页 > 源码编译 > kmp算法表示

kmp算法表示

发布时间:2023-11-30 09:25:15

① KMP是什么意思

kmp算法是一种改进的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。KMP算法的关键是根据给定的模式串W1,m,定义一个next函数。next函数包含了模式串本身局部匹配的信息。
完全掌握KMP算法思想
学过数据结构的人,都对KMP算法印象颇深。

② 关于KMP算法的说明有什么

(1)未改进的模式匹配算法的时间复杂度为O(nm),但在一般情况下,其实际的执行时间接近O(n+m),因此至今仍被采用。

(2)KMP算法仅当模式与主串之间存在许多“部分”匹配的情况下才显得比未改进的模式匹配快。

(2)KMP算法的最大特点是指示主串的指针不需要回溯,在整个匹配过程中,对主串仅需要从头至尾扫描一遍,这对处理存储在外存上的大文件是非常有效的。

③ KMP是什么意思

一种由Knuth(D.E.Knuth)、Morris(J.H.Morris)和Pratt(V.R.Pratt)三人设计的线性时间字符串匹配算法。这个算法不用计算变迁函数δ,匹配时间为Θ(n),只用到辅助函数π[1,m],它是在Θ(m)时间内,根据模式预先计算出来的。数组π使得我们可以按需要,“现场”有效的计算(在平摊意义上来说)变迁函数δ。粗略地说,对任意状态q=0,1,…,m和任意字符a∈Σ,π[q]的值包含了与a无关但在计算δ(q,a)时需要的信息。由于数组π只有m个元素,而δ有Θ(m∣Σ∣)个值,所以通过预先计算π而不是δ,使得时间减少了一个Σ因子。

④ kmp算法详解

KMP模式匹配算法
KMP算法是一种改进的字符串匹配算法,其关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的明[4]。
求得模式的特征向量之后,基于特征分析的快速模式匹配算法(KMP模式匹配算法)与朴素匹配算法类似,只是在每次匹配过程中发生某次失配时,不再单纯地把模式后移一位,而是根据当前字符的特征数来决定模式右移的位数[3]。
include "string. h"

#include<assert. h>

int KMPStrMatching(String T, String P, int. N, int startIndex)

{int lastIndex=T.strlen() -P.strlen();

if((1 astIndex- startIndex)<0)//若 startIndex过大,则无法匹配成功

return (-1);//指向P内部字符的游标

int i;//指向T内部字符的游标

int j=0;//指向P内部字符的游标

for(i= startIndex; i <T.strlen(); i++)

{while(P[j]!=T[i]&& j>0)

j=N[j-1];

if(P[j]==T[i])

j++;

if(j ==P.strlen())

return(1-j+1);//匹配成功,返回该T子串的开始位置

}

return (-1);

}

⑤ 算法-KMP

大一下参加学校ACM预备队集训的时候首次接触KMP算法,当时看了很多介绍文章,仍然不是很理解其实质,只是简单地套模板AC题目,待大二数据结构与算法课堂上再听老师介绍一次,才恍然大悟其实KMP也就是那么回事嘛。但当初为啥看那么多文章都没弄明白呢?正巧最近和朋友聊天时他告诉我他对KMP不是很理解,于是打算自己写一篇文章,巩固自己对KMP的认识,也希望能够帮助更多朋友理解KMP。
在开始之前,需要知晓的概念:

前缀:以原串串头为自身串头的子串,如 的前缀有:
后缀:以原串串尾为自身串尾的子串,如 的后缀有:

注意:字符串前后缀都不包括该串本身

给你一个文本串T(Text String)

再给你一个模式串P(Pattern String)

问该模式串是否在文本串中,怎么找?

一开始只好分别从文本串与模式串的串头开始逐字母比较

二者相同,再比较T串与P串的下一位

如此反复

如果一直这么顺利,两串对应位置的字符总相同,待P串中最后一个字符也匹配完毕,说明该模式串在文本串中存在,耶( •̀ ω •́ )y超开心,查找结束。但,大多数匹配过程不会如此顺利,在该例中,当匹配进行至

很明显,失配了。现在怎么办?按朴素思想,将P串相对T串整体右移一位,重新开始匹配,即

但这种算法效率无疑是十分低下的。设T串长度N,P串长度M,则朴素算法时间复杂度为O(MN)

已知的重要信息并没有被使用——已匹配的字符串前缀

在上例中,当P串最后一个字符匹配失败时,其已有包含七个字符的 前缀子串S 匹配成功

完全可以利用前缀子串S做点什么。观察到在S串

中,有相同前后缀,即下图蓝色部分

而S串各字符又与T串中对应字符相同,即有

当失配发生后,直接将P串右移四位使S串蓝色后缀部分对齐T串中蓝色前缀部分

从图中红框部分继续尝试匹配,发现再次失配。这次,已匹配成功的前缀串S为

而在该串中没有相同的前后缀,只能将P串串头移至失配处进行比较

再次失配。此时前缀串S为空串,只好如朴素算法般将P串整体右移一位,重新开始比较

匹配成功。于是又按照之前的步骤往下匹配,直至再次失配或匹配成功

后续步骤同上,不再赘述

上述示例已展现,KMP算法的精髓在于对已匹配成功的前缀串S的利用

在朴素算法中,匹配失败了,T串待匹配字符会回溯

T串原本已匹配至T[7] = 'X',但是因为失配,需回溯到T[1] = 'b'重新开始匹配

而在KMP算法中,若P[M]与T[K]匹配失败,K不会回溯。既然匹配过程是从T[0]开始逐渐向右进行的,至T[K]失配发生时,T[0]至T[K-1]早已匹配过,何必再回溯过去重复匹配呢?于是乎,就如问题引入部分展示般

每当失配发生,我们总是去关注P串中已匹配成功的前缀串S

因为该前缀串是匹配成功的,说明在T串中必定存在与该前缀串相同的子串,记为S'

若S串中存在相同前后缀

则S'串必然也存在此相同前后缀

所以只需将P串右移四位,使得S串的该相同前缀对齐S'串的该相同后缀

再尝试比较T[7]与P[3]

至于T[7]与P[3]是否能够匹配另说(当然,本例中一看就知道没匹配上),但通过对前缀串S的利用,成功省去了P串右移一位、两位和三位后的无效匹配

继续深入思考,给定一个具体的P串,其第N位的前缀串S内容是固定的,则S是否存在相同前后缀、相同前后缀的长度与内容也是确定的。换言之,对于一个具体的P串,当其与给定T串匹配至P[N]失配,P串应右移几位再次与T串进行匹配也是确定的。我们完全可以使用一个数组记录当P[N]失配后,应当使用N之前的哪一位再来与T串进行匹配,以此提高匹配效率,记该数组为Next数组

定义Next[i] = j表示当P串中第i位失配后,跳转至P串第j位再次尝试匹配

还是以之前的P串为例,它的Next数组求出来应为

取下标5为例,其前缀串为

最长相同前后缀为

若P[5]失配,应跳转至P[1]再次尝试匹配(最长相同前缀对应P[0],则取其后一位P[1],若存在多位,则取最后一位的下一位),P[5]的前一个字符P[4]对应字符'a',而P[1]前一个字符P[0]同对应字符'a',保证了P[1]之前字符与T串中对应字符保持匹配。所以Next[5] = 1,其余下标对应Next数组值同如此求。

特别地,规定Next[0] = -1。而对于除下标0外的任意下标N,Next[N]的含义是 前N-1个已匹配成功的字符构成的前缀串S中,最长相同前后缀长度。 所以若在下标为N处匹配失败了,则应前往Next[N]所对应的下标处匹配。

具体地,以下图所示为例,P[6]与T[6]失配

而Next[6] = 2,所以使用P[2]再次尝试与T[6]进行匹配

当求出P串Next数组后,便可快速进行与T串的匹配

现在问题只剩下如何求Next数组,注意到Next数组既然只与P串本身相关,与文本串T无关,故令P串与自身匹配即可求得

考虑字符串

其Next数组应为

令其与给定文本串相匹配

当匹配进行至

失配,于是跳转至P[Next[3]] = P[1]处再次尝试匹配

再度失配,也必然失配

问题在于不该出现P[N] =P[Next[N]]

若P[N] =P[Next[N]],则P[N]失配后使用P[Next[N]]再次尝试匹配,由于P[N] =P[Next[N]],P[N]匹配失败,P[Next[N]]必然也失败

因此,若出现P[N] =P[Next[N]]情况,则令Next[N]=Next[Next[N]]

本例中该字符串新Next数组为

当匹配进行至

失配,于是跳转至P[Next[3]] = P[0]处再次尝试匹配

省去了之前跳转至P[1]处的无效匹配

设T串长度M,P串长度N,由于KMP算法不会回溯,分析易知时间复杂度为O(m+n)

对于P[N],若其前缀串S含相同前后缀F,且F长度为n(n>1),Next[N]可以取1至n中任意值,为最大化匹配效率考虑,总是取最大相同前后缀以提高效率,节省时间

⑥ 什么是KMP算法

KMP就是串匹配算法
运用自动机原理
比如说
我们在S中找P
设P={ababbaaba}
我们将P对自己匹配
下面是求的过程:{依次记下匹配失败的那一位}
[2]ababbaaba
......ababbaaba[1]
[3]ababbaaba
........ababbaaba[1]
[4]ababbaaba
........ababbaaba[2]
[5]ababbaaba
........ababbaaba[3]
[6]ababbaaba
..............ababbaaba[1]
[7]ababbaaba
..............ababbaaba[2]
[8]ababbaaba
.................ababbaaba[2]
[9]ababbaaba
.................ababbaaba[3]
得到Next数组‘0,1,1,2,3,1,2,2,3’
主过程:
[1]i:=1 j:=1
[2]若(j>m)或(i>n)转[4]否则转[3]
[3]若j=0或a[i]=b[j]则【inc(i)inc(j)转[2]】否则【j:=next[j]转2】
[4]若j>m则return(i-m)否则return -1;
若返回-1表示失败,否则表示在i-m处成功
若还不懂mail:[email protected]

参考一下这里吧:

http://www.chinaaspx.com/archive/delphi/4733.htm

⑦ 数据结构与算法——字符串匹配问题(KMP算法)

KMP算法也是比较着名的模式匹配算法。是由 D.E.Knuth,J.H.Morrs VR.Pratt 发表的一个模式匹配算法。可以大大避免重复遍历的情况。

如果使用暴风算法的话,前面五个字母完全相等,直到第六个字母 "f" "x" 不相等。如下图:

T = “abcdex”
j 123456
模式串 abcdex
next[j] 011111

T = "abcabx"
j 123456
模式串T abcabx
next[j] 011123

T = "ababaaaba"
j———————123456789
模式串T——— ababaaaba
next[j]————011234223

T = "aaaaaaaab"
j———————123456789
模式串T——— aaaaaaaab
next[j]————012345678

next数组其实就是求解字符串要回溯的位置
假设,主串S= “abcababca”;模式串T=“abcdex”,由以上分析得出next数组为011111,next数组意味着当主串与模式串不匹配时,都需要从第一个的位置重新比较。

KMP算法也是有缺陷的,比如主串S=“aaaabcde”,模式串T= “aaaaax”。next的数组就是012345;

当开始匹配时,当i= 5,j = 5时,我们发现字符"b"与字符“a”不相等,如上图,j = next[5] = 4;

由于T串的第二、三、四、五位置的字符都与首位“a”相等,那么可以用首位next[1]的值去取代与它相等的后续字符的next[j],那么next数组为{0,0,0,0,0,5};

在求解nextVal数组的5种情况

⑧ kmp算法的基本思想

主串:a
b
a
c
a
a
b
a
c
a
b
a
c
a
b
a
a
b
b,下文中我们称作T
模式串:a
b
a
c
a
b,下文中我们称作W
在暴力字符串匹配过程中,我们会从T[0]

W[0]
匹配,如果相等则匹配下一个字符,直到出现不相等的情况,此时我们会简单的丢弃前面的匹配信息,然后从T[1]

W[0]匹配,循环进行,直到主串结束,或者出现匹配的情况。这种简单的丢弃前面的匹配信息,造成了极大的浪费和低下的匹配效率。
然而,在KMP算法中,对于每一个模式串我们会事先计算出模式串的内部匹配信息,在匹配失败时最大的移动模式串,以减少匹配次数。
比如,在简单的一次匹配失败后,我们会想将模式串尽量的右移和主串进行匹配。右移的距离在KMP算法中是如此计算的:在已经匹配的模式串子串中,找出最长的相同的前缀和后缀,然后移动使它们重叠。
在第一次匹配过程中
T:
a
b
a
c
a
a
b
a
c
a
b
a
c
a
b
a
a
b
b
W:
a
b
a
c
ab
在T[5]与W[5]出现了不匹配,而T[0]~T[4]是匹配的,现在T[0]~T[4]就是上文中说的已经匹配的模式串子串,现在移动找出最长的相同的前缀和后缀并使他们重叠:
T:
a
b
a
c
aab
a
c
a
b
a
c
a
b
a
a
b
b
W:
a
b
a
c
ab
然后在从上次匹配失败的地方进行匹配,这样就减少了匹配次数,增加了效率。
然而,有些同学可能会问了,每次都要计算最长的相同的前缀会不会反而浪费了时间,对于模式串来说,我们会提前计算出每个匹配失败的位置应该移动的距离,花费的时间是常数时间。比如:
j012345W[j]abacabF(j)001012当W[j]与T[i]不匹配的时候,设置j
=
F(j-1)
文献中,朱洪对KMP算法作了修改,他修改了KMP算法中的next函数,即求next函数时不但要求W[1,next(j)-1]=W[j-(next(j)-1),j-1],而且要求W[next(j)]<>W[j],他记修改后的next函数为newnext。显然在模式串字符重复高的情况下,朱洪的KMP算法比KMP算法更加有效。
以下给出朱洪的改进KMP算法和next函数和newnext函数的计算算法。

阅读全文

与kmp算法表示相关的资料

热点内容
udp命令字 浏览:659
app服务端java源码 浏览:798
电脑用文件夹玩大型游戏 浏览:254
安卓耳塞失灵怎么办 浏览:765
华三交换机保存命令 浏览:605
命令方块怎么调键盘 浏览:841
不把密码存在服务器上怎么办 浏览:398
怎么让指令方块的命令消失 浏览:543
用单片机做plc 浏览:404
云服务器进入子目录命令 浏览:795
服务器机柜如何配电 浏览:578
怎么删除iphone资源库里的app 浏览:940
pdf鱼 浏览:648
单片机pcf8591什么作用 浏览:805
sql命令学院 浏览:283
加密软件在电脑那个盘 浏览:988
android获取外部存储 浏览:573
怎么查自己家的服务器地址 浏览:858
编程c语言工作好不好 浏览:569
单片机焊接地怎么连接 浏览:694