导航:首页 > 源码编译 > 图论算法c语言

图论算法c语言

发布时间:2023-12-02 16:00:18

㈠ acm竞赛知识点

1. acm常用小知识点
acm常用小知识点 1.ACM 关于ACM程序设计竞赛,需要掌握哪些知识点,最好能详细一
训练过ACM等程序设计竞赛的人在算法上有较大的优势,这就说明当你编程能力提高之后,主要时间是花在思考算法上,不是花在写程序与debug上。

下面给个计划你练练:第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打出来。1.最短路(Floyd、Dijstra,BellmanFord) 2.最小生成树(先写个prim,kruscal要用并查集,不好写) 3.大数(高精度)加减乘除4.二分查找. (代码可在五行以内) 5.叉乘、判线段相交、然后写个凸包. 6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简) 7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式. 8. 调用系统的qsort, 技巧很多,慢慢掌握. 9. 任意进制间的转换第二阶段:练习复杂一点,但也较常用的算法。

如: 1. 二分图匹配(匈牙利),最小路径覆盖 2. 网络流,最小费用流。 3. 线段树. 4. 并查集。

5. 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp 6.博弈类算法。博弈树,二进制法等。

7.最大团,最大独立集。 8.判断点在多边形内。

9. 差分约束系统. 10. 双向广度搜索、A*算法,最小耗散优先.第三阶段: 前两个阶段是打基础,第三阶段是锻炼在比赛中可以快速建立模型、想新算法。这就要平时多做做综合的题型了。

1. 把oibh上的论文看看(大概几百篇的,我只看了一点点,呵呵)。 2. 平时扫扫zoj上的难题啦,别老做那些不用想的题.(中大acm的版主经常说我挑简单的来做:-P ) 3. 多参加网上的比赛,感受一下比赛的气氛,评估自己的实力. 4. 一道题不要过了就算,问一下人,有更好的算法也打一下。

5. 做过的题要记好 :-)下面转自:ACMer必备知识(任重而道远。)

图论 路径问题 0/1边权最短路径 BFS 非负边权最短路径(Dijkstra) 可以用Dijkstra解决问题的特征 负边权最短路径 Bellman-Ford Bellman-Ford的Yen-氏优化 差分约束系统 Floyd 广义路径问题 传递闭包 极小极大距离 / 极大极小距离 Euler Path / Tour 圈套圈算法 混合图的 Euler Path / Tour Hamilton Path / Tour 特殊图的Hamilton Path / Tour 构造 生成树问题 最小生成树 第k小生成树 最优比率生成树 0/1分数规划 度限制生成树 连通性问题 强大的DFS算法 无向图连通性 割点 割边 二连通分支 有向图连通性 强连通分支 2-SAT 最小点基 有向无环图 拓扑排序 有向无环图与动态规划的关系 二分图匹配问题 一般图问题与二分图问题的转换思路 最大匹配 有向图的最小路径覆盖 0 / 1矩阵的最小覆盖 完备匹配 最优匹配 稳定婚姻 网络流问题 网络流模型的简单特征和与线性规划的关系 最大流最小割定理 最大流问题 有上下界的最大流问题 循环流 最小费用最大流 / 最大费用最大流 弦图的性质和判定组合数学 解决组合数学问题时常用的思想 逼近 递推 / 动态规划 概率问题 Polya定理计算几何 / 解析几何 计算几何的核心:叉积 / 面积 解析几何的主力:复数 基本形 点 直线,线段 多边形 凸多边形 / 凸包 凸包算法的引进,卷包裹法 Graham扫描法 水平序的引进,共线凸包的补丁 完美凸包算法 相关判定 两直线相交 两线段相交 点在任意多边形内的判定 点在凸多边形内的判定 经典问题 最小外接圆 近似O(n)的最小外接圆算法 点集直径 旋转卡壳,对踵点 多边形的三角剖分数学 / 数论 最大公约数 Euclid算法 扩展的Euclid算法 同余方程 / 二元一次不定方程 同余方程组 线性方程组 高斯消元法 解mod 2域上的线性方程组 整系数方程组的精确解法 矩阵 行列式的计算 利用矩阵乘法快速计算递推关系 分数 分数树 连分数逼近 数论计算 求N的约数个数 求phi(N) 求约数和 快速数论变换 …… 素数问题 概率判素算法 概率因子分解数据结构 组织结构 二叉堆 左偏树 二项树 胜者树 跳跃表 样式图标 斜堆 reap 统计结构 树状数组 虚二叉树 线段树 矩形面积并 圆形面积并 关系结构 Hash表 并查集 路径压缩思想的应用 STL中的数据结构 vector deque set / map动态规划 / 记忆化搜索 动态规划和记忆化搜索在思考方式上的区别 最长子序列系列问题 最长不下降子序列 最长公共子序列 最长公共不下降子序列 一类NP问题的动态规划解法 树型动态规划 背包问题 动态规划的优化 四边形不等式 函数的凸凹性 状态设计 规划方向线性规划常用思想 二分 最小表示法串 KMP Trie结构 后缀树/后缀数组 LCA/RMQ 有限状态自动机理论排序 选择/冒泡 快速排序 堆排序 归并排序 基数排序 拓扑排序 排序网络。
2.ACM需要具备什么知识
ACM国际大学生程序设计竞赛(ACM/ICPC :ACM International Collegiate Programming Contest)是由国际计算机界历史悠久、颇具权威性的组织ACM( 美国计算机协会)学会(Association for puter Machineary)主办,是世界上公认的规模最大、水平最高的国际大学生程序设计竞赛,其目的旨在使大学生运用计算机来充分展示自已分析问题和解决问题的能力。该项竞赛从1970年举办至今已历25届,因历届竞赛都荟萃了世界各大洲的精英,云集了计算机界的“希望之星”,而受到国际各知名大学的重视,并受到全世界各着名计算机公司如Microsoft(微软公司) 、IBM等的高度关注,成为世界各国大学生最具影响力的国际级计算机类的赛事,ACM所颁发的获奖证书也为世界各着名计算机公司、各知名大学所认可。

该项竞赛是年度性竞赛,分区域预赛和国际决赛两个阶段进行,各预赛区第一名自动获得参加世界决赛的资格,世界决赛安排在每年的3~4月举行,而区域预赛安排在上一年的9月~12月在各大洲举行。从1998年开始,IBM公司连续5年独家赞助该项赛事的世界决赛和区域预赛。这项比赛是以大学为单位组队(每支队由教练、3名正式队员,一名后备队员组成)参赛,要求在5个小时内,解决5~8到题目。

ACM/ICPC的区域预赛是规模很大,范围很广的赛事,近几年,全世界有1000多所大学, 2000多支参赛队在六大洲的28~30个赛站中争夺世界决赛的60~66个名额,去年我校举办的区域预赛,就有来自50多所高校的100多支队伍参加,其激烈程度可想而知。

与其他编程竞赛相比,ACM/ICPC题目难度更大,更强调算法的高效性,不仅要解决一个指定的命题,而且必需要以最佳的方式解决指定的命题;它涉及知识面广,与大学计算机系本科以及研究生如程序设计、离散数学、数据结构、人工智能、算法分析与设计等相关课程直接关联,对数学要求更高,由于采用英文命题,对英语要求高,ACM/ICPC采用3人合作、共用一台电脑,所以它更强调团队协作精神;由于许多题目并无现成的算法,需要具备创新的精神,ACM/ICPC不仅强调学科的基础,更强调全面素质和能力的培养。ACM/ICPC是一种全封闭式的竞赛,能对学生能力进行实时的全面的考察,其成绩的真实性更强,所以目前已成为内地高校的一个热点,是培养全面发展优秀人材的一项重要的活动。概括来说就是:强调算法的高效性、知识面要广、对数学和英语要求较高、团队协作和创新精神。
3.ACM需要那些方面的知识
一、语言是最重要的基本功 无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要 过的第一道关。

亚洲赛区的比赛支持的语言包括C/C++与java。笔者首先说说JAVA,众所 周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的 优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的 操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而 竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出 了更高的要求,是相当不利的。

其实,笔者并不主张大家在这种场合过多地运用面向对 象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会 降低程序的执行效率。 接着说C和C++。

许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没 有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效 率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高 了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。 而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的 可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。

如果有些同 学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间 的。 C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一 接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。

但是 ,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必 须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法; 另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂 度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。 通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分 全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我 举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误 : 在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由 于一个带缓冲一个不带,所以输出一长就混乱了。

只是因为当时judge team中负责F题的 人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出 ),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审 题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地 方的。

现在我们转入第二个方面的讨论,基础学科知识的积累。 二、以数学为主的基础知识十分重要 虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的 思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。

今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的 例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有 一定应用,但是不多。

因此,大一的同学也不必为自己还没学数据结构而感到不知从何 入手提高,把数学捡起来吧!下面我来谈谈在竞赛中应用的数学的主要分支。 1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支, 其重中之重又在于图论和组合数学,尤其是图论。

图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许 多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大 ,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到 力不从心,也不必着急,可以慢慢积累。

竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于 图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些 部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难 题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。

2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解 决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想 上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码 学常识确定大概的过程之后,核心算法往往要涉及数论的内容。

3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知 识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算 、内点外点的判断、凸包等。
4.ACM需要那些方面的知识
一、语言是最重要的基本功 无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要 过的第一道关。

亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所 周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的 优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的 操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而 竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出 了更高的要求,是相当不利的。

其实,笔者并不主张大家在这种场合过多地运用面向对 象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会 降低程序的执行效率。 接着说C和C++。

许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没 有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效 率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高 了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。 而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的 可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。

如果有些同 学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间 的。 C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一 接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。

但是 ,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必 须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法; 另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂 度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。 通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分 全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我 举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误 : 在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由 于一个带缓冲一个不带,所以输出一长就混乱了。

只是因为当时judge team中负责F题的 人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出 ),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审 题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地 方的。

现在我们转入第二个方面的讨论,基础学科知识的积累。 二、以数学为主的基础知识十分重要 虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的 思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。

今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的 例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有 一定应用,但是不多。

因此,大一的同学也不必为自己还没学数据结构而感到不知从何 入手提高,把数学捡起来吧!下面我来谈谈在竞赛中应用的数学的主要分支。 1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支, 其重中之重又在于图论和组合数学,尤其是图论。

图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许 多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大 ,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到 力不从心,也不必着急,可以慢慢积累。

竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于 图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些 部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难 题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。

2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解 决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想 上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码 学常识确定大概的过程之后,核心算法往往要涉及数论的内容。

3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知 识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算 、内点外点的判断、凸包等。
5.ACM需要具备什么知识
ACM国际大学生程序设计竞赛(ACM/ICPC :ACM International Collegiate Programming Contest)是由国际计算机界历史悠久、颇具权威性的组织ACM( 美国计算机协会)学会(Association for puter Machineary)主办,是世界上公认的规模最大、水平最高的国际大学生程序设计竞赛,其目的旨在使大学生运用计算机来充分展示自已分析问题和解决问题的能力。该项竞赛从1970年举办至今已历25届,因历届竞赛都荟萃了世界各大洲的精英,云集了计算机界的“希望之星”,而受到国际各知名大学的重视,并受到全世界各着名计算机公司如Microsoft(微软公司) 、IBM等的高度关注,成为世界各国大学生最具影响力的国际级计算机类的赛事,ACM所颁发的获奖证书也为世界各着名计算机公司、各知名大学所认可。

该项竞赛是年度性竞赛,分区域预赛和国际决赛两个阶段进行,各预赛区第一名自动获得参加世界决赛的资格,世界决赛安排在每年的3~4月举行,而区域预赛安排在上一年的9月~12月在各大洲举行。从1998年开始,IBM公司连续5年独家赞助该项赛事的世界决赛和区域预赛。这项比赛是以大学为单位组队(每支队由教练、3名正式队员,一名后备队员组成)参赛,要求在5个小时内,解决5~8到题目。

ACM/ICPC的区域预赛是规模很大,范围很广的赛事,近几年,全世界有1000多所大学, 2000多支参赛队在六大洲的28~30个赛站中争夺世界决赛的60~66个名额,去年我校举办的区域预赛,就有来自50多所高校的100多支队伍参加,其激烈程度可想而知。

与其他编程竞赛相比,ACM/ICPC题目难度更大,更强调算法的高效性,不仅要解决一个指定的命题,而且必需要以最佳的方式解决指定的命题;它涉及知识面广,与大学计算机系本科以及研究生如程序设计、离散数学、数据结构、人工智能、算法分析与设计等相关课程直接关联,对数学要求更高,由于采用英文命题,对英语要求高,ACM/ICPC采用3人合作、共用一台电脑,所以它更强调团队协作精神;由于许多题目并无现成的算法,需要具备创新的精神,ACM/ICPC不仅强调学科的基础,更强调全面素质和能力的培养。ACM/ICPC是一种全封闭式的竞赛,能对学生能力进行实时的全面的考察,其成绩的真实性更强,所以目前已成为内地高校的一个热点,是培养全面发展优秀人材的一项重要的活动。概括来说就是:强调算法的高效性、知识面要广、对数学和英语要求较高、团队协作和创新精神。
6.ACM常用的经典算法
大概分为数论算法,图论算法,A*算法。

数论算法:

排序(选择,冒泡,快速,归并,堆,基数,桶排序等)

递归,回溯

概率,随机

公约数,素数

因数分解

矩阵运算

线性规划

最小二乘

微积分

多项式分解和级数

图论算法:

哈夫曼树(即最优二叉树)

哈希表

Prim,Kruskal算法(即最小生成树算法)

红黑树

a-B剪枝法

深、广度搜索

拓扑排序

强连通分量

Dijkstra,Bellman-Ford,Floyd-Warashall算法(最短路径算法)

计算几何(线段相交,凸包,最近点对)

A*算法:

动态规划

贪心算法

KMP算法

哈密顿回路问题

子集问题

博弈(极大极小值算法等)
7.参加ACM需要准备哪些知识
学ACM要熟练C语言的基础语法,对编程有很大的兴趣,还要学关于数据结构的知识。

内容大多数是考数据结构,例如:深度搜索(dfs)、广度搜索(bfs)、并查集、母函数、最小生成树、数论、动态规划(重点)、背包问题、最短路、网络流……还有很多算法,我列出这些是经常考到的,我也在学习上述所说的。 最好买一本《数据结构》或者关于算法的书看看,看完一些要自己动手实践做题,做题的话去杭电acm做题,里面有很多很基础的题,不错的。

资料的话,网络有很多,我多数都是网络或者 *** ,还有可以看看别人的博客的解题报告,里面有详细的介绍,不懂还可以问问同学师兄的。 对了,还有一点,acm比赛都是英文题目的,比赛时带本字典查吧。

希望我说的你能满意,祝你能在acm方面有所收获。

㈡ 本科独立用C语言完成没有优化的C语言编译器属于什么水平

我觉得水平还是很高的,但意义恐怕不大。编译器技术是非常成熟的领域,而且由于应用场景的限
制实时,复杂的算法已经自动出局了,你可选的东西是有限的。编译器可能有很多实现的形
式,虚拟机/解释器/静态编译器 等,也有成熟的开源实现。作为本科生,而非专门研究该分支的学生,应该合理分配自己学习的时间,如果做这个编译器就干
掉了大半年,那计网和OS这些课程该咋办? 

我知道很多人会认为没有做编译器优化特指中段优化,不考虑机器码上的优化比较划水。但编
译器优化是一个很复杂的东西:首先它和你用的IR表示有关而且是强烈耦合,SSA IR基本还
好,有开源代码和文献记载,你想要的都能在网上挖到但这怎么体现你的水平是吧。你
要考虑编译器的性能,尽管编译器的后端优化基本上可以纳入到某种PEabstract interpretation的
范畴中。

要不然你可以通过编写插件的方式白嫖例如visual studio code这类软
件的强大编辑功能,如果你写的不是c compiler,你也可以尽量把语法设计得很像c,这样你又能进一步
白嫖其强大的intellisense code,当然仍然有不少人或者应该说团队达到了这一步,到这里,应该卷死
了99.99%的同行应该毫无问题。

㈢ C语言算法有哪些 并举例和分析

算法大全(C,C++)
一、 数论算法

1.求两数的最大公约数
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

2.求两数的最小公倍数
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;

3.素数的求法
A.小范围内判断一个数是否为质数:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判断longint范围内的数是否为素数(包含求50000以内的素数表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}

二、图论算法

1.最小生成树

A.Prim算法:

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k加入生成树}
{生成树中增加一条新的边k到closest[k]}
{修正各点的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal算法:(贪心)

按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I}
p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
sort;
{对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.最短路径

A.标号法求解单源点最短路径:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1为源点}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {对每一个已计算出最短路径的点}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed算法求解所有顶点对之间的最短路径:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
for k:=1 to n do {枚举中间结点}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 算法:

var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
min:=maxint; u:=0; {u记录离1集合最近的结点}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.计算图的传递闭包

Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

4.无向图的连通分量

A.深度优先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {对结点I染色}
c[i]:=color;
dfs(I,color);
end;
end;

B 宽度优先(种子染色法)

5.关键路径

几个定义: 顶点1为源点,n为汇点。
a. 顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 边活动最早开始时间 Ee[I], 若边I由<j,k>表示,则Ee[I] = Ve[j];
d. 边活动最晚开始时间 El[I], 若边I由<j,k>表示,则El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,则活动j为关键活动,由关键活动组成的路径为关键路径。
求解方法:
a. 从源点起topsort,判断是否有回路并计算Ve;
b. 从汇点起topsort,求Vl;
c. 算Ee 和 El;

6.拓扑排序

找入度为0的点,删去与其相连的所有边,不断重复这一过程。
例 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.

7.回路问题

Euler回路(DFS)
定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点)

Hamilton回路
定义:经过图的每个顶点仅一次的回路。

一笔画
充要条件:图连通且奇点个数为0个或2个。

9.判断图中是否有负权回路 Bellman-ford 算法

x[I],y[I],t[I]分别表示第I条边的起点,终点和权。共n个结点和m条边。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚举每一条边}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10.第n最短路径问题

*第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。
*同理,第n最短路径可在求解第n-1最短路径的基础上求解。

三、背包问题

*部分背包问题可有贪心法求解:计算Pi/Wi
数据结构:
w[i]:第i个背包的重量;
p[i]:第i个背包的价值;

1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):

A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procere search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]为前n个物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大价值。
F[I,j] 为容量为I时取前j个背包所能获得的最大价值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }

C.求恰好装满的情况数。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重复背包

A求最多可放入的重量。
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
状态转移方程为
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大价值。
USACO 1.2 Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*实现:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好装满的情况数。
Ahoi2001 Problem2
求自然数n本质不同的质数和的表达式的数目。
思路一,生成每个质数的系数的排列,在一一测试,这是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此过程计算当前系数的计算结果,now为结果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系数}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,递归搜索效率较高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }

思路三:可使用动态规划求解
USACO1.2 money system
V个物品,背包容量为n,求放法总数。
转移方程:

Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {读入第一个物品的重量}
i:=0; {a[i]为背包容量为i时的放法总数}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值}
for i:=2 to v do
begin
read(now);
update; {动态更新}
end;
writeln(a[n]);

四、排序算法

A.快速排序:

procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {将当前序列在中间位置的数定义为中间数}
repeat
while a[i]<mid do inc(i); {在左半部分寻找比中间数大的数}
while a[j]>mid do dec(j);{在右半部分寻找比中间数小的数}
if i<=j then begin {若找到一组与排序目标不一致的数对则交换它们}
swap(a[i],a[j]);
inc(i);dec(j); {继续找}
end;
until i>j;
if l<j then qsort(l,j); {若未到两个数的边界,则递归搜索左右区间}
if i<r then qsort(i,r);
end;{sort}

B.插入排序:

思路:当前a[1]..a[i-1]已排好序了,现要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}

C.选择排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;

D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比较相邻元素的关系}
end;

E.堆排序:
procere sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]与a[k+1]中较大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {将根放在合适的位置}
end;

procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;

㈣ 怎么学习编写程序

1 一、明确学习目的

学习编程对大多数IT业人员来说都是非常有用的。学编程,做一名编程人员,从个人角度讲,可以解决在软件使用中所遇到的问题,改进现有软件,可以为自己找到一份理想的工作添加重要得砝码,有利于在求职道路上谋得一个好的职位;从国家的角度,可以为中国的软件产业做出应有的贡献,一名优秀的程序员永远是被争夺的对象。学习编程还能锻炼思维,使我们的逻辑思维更加严密;能够不断享受到创新的乐趣,将一直有机会走在高科技的前沿,因为程序设计本身是一种创造性的工作。知识经济时代给我们带来了无限的机会,要想真正掌握计算机技术,并在IT行业里干出一番事业来,有所作为,具有一定的编程能力是一个基本条件和要求。

2 二、打好基础

学编程要具备一定的基础,总结之有以下几方面:

1、数学基础 从计算机发展和应用的历史来看计算机的数学模型和体系结构等都是有数学家提出的,最早的计算机也是为数值计算而设计的。因此,要学好计算机就要有一定的数学基础,出学者有高中水平就差不多了。

2、逻辑思维能力的培养学程序设计要有一定的逻辑思维能力,“逻思力”的培养要长时间的实践锻炼。要想成为一名优秀的程序员,最重要的是掌握编程思想。要做到这一点必须在反复的实践、观察、分析、比较、总结中逐渐地积累。因此在学习编程过程中,我们不必等到什么都完全明白了才去动手实践,只要明白了大概,就要敢于自己动手去体验。谁都有第一次。有些问题只有通过实践后才能明白,也只有实践才能把老师和书上的知识变成自己的,高手都是这样成材的。

3 三、注意理解一些重要概念

一本程序设计的书看到的无非就是变量、函数、条件语句、循环语句等概念,但要真正能进行编程应用,需要深入理解这些概念,在理解的基础上应用,不要只简单地学习语法、结构,而要吃透针这些语法、结构的应用例子,做到举一反三,触类旁通。

4 四、掌握编程思想

学习一门语言或开发工具,语法结构、功能调用是次要的,最主要是学习它的思想。关键是学一种思想,有了思想,那么我们就可以触类旁通。

5 五、多实践、多交流

掌握编程思想必须在编程实际工作中去实践和体会。编程起步阶段要经常自己动手设计程序,具体设计时不要拘泥于固定的思维方式,遇到问题要多想几种解决的方案。这就要多交流,各人的思维方式不同、角度各异,各有高招,通过交流可不断吸收别人的长处,丰富编程实践,帮助自己提高水平。亲自动手进行程序设计是创造性思维应用的体现,也是培养逻辑思维的好方法。

6 六、养成良好的编程习惯

编程入门不难,但入门后不断学习是十分重要的,相对来说较为漫长。在此期间要注意养成一些良好的编程习惯。编程风格的好坏很大程度影响程序质量。良好的编程风格可以使程序结构清晰合理,且使程序代码便于维护。如代码的缩进编排、变量命令规则的一致性、代码的注释等。

7 七、上网学编程

在网上可以学到很多不同的编程思想、方法、经验和技巧,有大量的工具和作品及相关的辅导材料供下载。

8 八、加强计算机理论知识的再学习

学编程是符合“理论→实践→再理论→再实践”的一个认识过程。一开始要具有一定的计算机理论基础知识,包括编程所需的数学基础知识,具备了入门的条件,就可以开始编程的实践,从实践中可以发现问题需要加强计算机理论知识的再学习。程序人人皆可编,但当你发现编到一定程度很难再提高的时候,就要回头来学习一些计算机科学和数学基础理论。学过之后,很多以前遇到的问题都会迎刃而解,使人有豁然开朗之感。因此在学习编程的过程中要不断地针对应用中的困惑和问题深入学习数据结构、算法、计算机原理、编译原理、操作系统原理、软件工程等计算机科学的理论基础和数理逻辑、代数系统、图论、离散数学等数学理论基础知识。这样经过不断的学习,再努力地实践,编程水平一定会不断提高到一个新高度。

㈤ 想学计算机编程但是不知道学什么

1.首先刚入门的话,你要先明确目标选择一门编程语言入门。个人建议选择java或者C。在学习编程语言的时候,计算机有关的知识你也是需要涉及的,也要多多去了解一下,看一些书籍,在网上下载视频边看边学效果会好一些。在你理论知识的基础上学习起来会相对容易一些。当你熟悉掌握一门语言后,这个时候就可以有学习的目标了。自己对哪方面感兴趣喜欢哪种语言就学哪门。

2.我这边来简单介绍一下java的学习内容吧。

①JAVA编程基础(基础语法、面向对象、和谐特性等)

②WEB应用开发(静态网页制作、Oracle数据库、Java Web开发技术、Linux技术、网站性能与安全、软件工程开发流程、Java Web和谐等)

③企业级框架开发(数据结构与算法、SSH框架、JavaEE和谐等)

④项目实训

3.如果你真的想学好编程语言,C语言也是蛮重要的。但是新手学C语言通常会出现一个问题,就是除了写个排序算法,似乎根本想不出来C语言有什么用。这是因为我们的教科书讲C语言的时候,只讲这些基本算法,甚至连读写文件都不去讲,更不用说图形界面处理了和网络操作了,没有这些知识,想写一个真正的应用那是不可能的。不过,书上没有不等于学不了,文件操作和网络操作的讲解网络上有着大把的讲解,只要你找几篇文章看看,具备了这些基础知识,写一个自己的WEB服务器并不难。在逐步增加功能完善功能的同时,你的C语言基本上就可以达到相当牛人的水平了。

4.互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,建议实地考察对比一下。

祝你学有所成,望采纳。

阅读全文

与图论算法c语言相关的资料

热点内容
画世界的app叫什么 浏览:824
vc6编译时显示无法执行 浏览:546
java动态初始化数组 浏览:637
概率论与数理统计答案pdf 浏览:681
得物app上面的鞋为什么这么贵 浏览:909
如何从爱思服务器注销游戏账号 浏览:944
幼儿编程教育培训多少钱 浏览:406
经常生气有什么东西能解压 浏览:903
代理服务器地址和端口可以怎么填 浏览:65
unity5手游编译模型 浏览:268
安卓无人机app源码 浏览:811
pl1编程语言 浏览:801
台达plc编程换算指令大全 浏览:176
手机上的编程游戏 浏览:110
服务器密码机有什么用 浏览:479
dos磁盘命令 浏览:957
单片机cpu52的功能 浏览:693
opc服务器怎么开发 浏览:375
觅喜是个什么app 浏览:405
加密cd机 浏览:948