1. 机器学习有几种算法
1. 线性回归
工作原理:该算法可以按其权重可视化。但问题是,当你无法真正衡量它时,必须通过观察其高度和宽度来做一些猜测。通过这种可视化的分析,可以获取一个结果。
2. 逻辑回归
根据一组独立变量,估计离散值。它通过将数据匹配到logit函数来帮助预测事件。
3. 决策树
利用监督学习算法对问题进行分类。决策树是一种支持工具,它使用树状图来决定决策或可能的后果、机会事件结果、资源成本和实用程序。根据独立变量,将其划分为两个或多个同构集。
4. 支持向量机(SVM)
基本原理(以二维数据为例):如果训练数据是分布在二维平面上的点,它们按照其分类聚集在不同的区域。基于分类边界的分类算法的目标是,通过训练,找到这些分类之间的边界(直线的――称为线性划分,曲线的――称为非线性划分)。对于多维数据(如N维),可以将它们视为N维空间中的点,而分类边界就是N维空间中的面,称为超面(超面比N维空间少一维)。线性分类器使用超平面类型的边界,非线性分类器使用超曲面。
5. 朴素贝叶斯
朴素贝叶斯认为每个特征都是独立于另一个特征的。即使在计算结果的概率时,它也会考虑每一个单独的关系。
它不仅易于使用,而且能有效地使用大量的数据集,甚至超过了高度复杂的分类系统。
6. KNN(K -最近邻)
该算法适用于分类和回归问题。在数据科学行业中,它更常用来解决分类问题。
这个简单的算法能够存储所有可用的案例,并通过对其k近邻的多数投票来对任何新事件进行分类。然后将事件分配给与之匹配最多的类。一个距离函数执行这个测量过程。
7. k – 均值
这种无监督算法用于解决聚类问题。数据集以这样一种方式列在一个特定数量的集群中:所有数据点都是同质的,并且与其他集群中的数据是异构的。
8. 随机森林
利用多棵决策树对样本进行训练并预测的一种分类器被称为随机森林。为了根据其特性来分类一个新对象,每棵决策树都被排序和分类,然后决策树投票给一个特定的类,那些拥有最多选票的被森林所选择。
9. 降维算法
在存储和分析大量数据时,识别多个模式和变量是具有挑战性的。维数简化算法,如决策树、因子分析、缺失值比、随机森林等,有助于寻找相关数据。
10. 梯度提高和算法
这些算法是在处理大量数据,以作出准确和快速的预测时使用的boosting算法。boosting是一种组合学习算法,它结合了几种基本估计量的预测能力,以提高效力和功率。
综上所述,它将所有弱或平均预测因子组合成一个强预测器。
2. 机器学习中需要掌握的算法有哪些
在学习机器学习中,我们需要掌握很多算法,通过这些算法我们能够更快捷地利用机器学习解决更多的问题,让人工智能实现更多的功能,从而让人工智能变得更智能。因此,本文为大家介绍一下机器学习中需要掌握的算法,希望这篇文章能够帮助大家更深入地理解机器学习。
首先我们为大家介绍的是支持向量机学习算法。其实支持向量机算法简称SVM,一般来说,支持向量机算法是用于分类或回归问题的监督机器学习算法。SVM从数据集学习,这样SVM就可以对任何新数据进行分类。此外,它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且,有许多这样的线性超平面,SVM试图最大化各种类之间的距离,这被称为边际最大化。而支持向量机算法那分为两类,第一就是线性SVM。在线性SVM中,训练数据必须通过超平面分离分类器。第二就是非线性SVM,在非线性SVM中,不可能使用超平面分离训练数据。
然后我们给大家介绍一下Apriori机器学习算法,需要告诉大家的是,这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A,则项目B也以一定概率发生,生成的大多数关联规则都是IF_THEN格式。Apriori机器学习算法工作的基本原理就是如果项目集频繁出现,则项目集的所有子集也经常出现。
接着我们给大家介绍一下决策树机器学习算法。其实决策树是图形表示,它利用分支方法来举例说明决策的所有可能结果。在决策树中,内部节点表示对属性的测试。因为树的每个分支代表测试的结果,并且叶节点表示特定的类标签,即在计算所有属性后做出的决定。此外,我们必须通过从根节点到叶节点的路径来表示分类。
而随机森林机器学习算法也是一个重要的算法,它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。我们必须在数据集的随机样本上多次训练模型,因为我们需要从随机森林算法中获得良好的预测性能。此外,在这种集成学习方法中,我们必须组合所有决策树的输出,做出最后的预测。此外,我们通过轮询每个决策树的结果来推导出最终预测。
在这篇文章中我们给大家介绍了关于机器学习的算法,具体包括随机森林机器学习算法、决策树算法、apriori算法、支持向量机算法。相信大家看了这篇文章以后对机器学习有个更全面的认识,最后祝愿大家都学有所成、学成归来。
3. 机器学习有哪些算法
1. 线性回归
在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。
2. Logistic 回归
Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。
3. 线性判别分析
Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。
4.分类和回归树
决策树是一类重要的机器学习预测建模算法。
5. 朴素贝叶斯
朴素贝叶斯是一种简单而强大的预测建模算法。
6. K 最近邻算法
K 最近邻(KNN)算法是非常简单而有效的。KNN 的模型表示就是整个训练数据集。
7. 学习向量量化
KNN 算法的一个缺点是,你需要处理整个训练数据集。
8. 支持向量机
支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。
9. 袋装法和随机森林
随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。
想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。点击预约免费试听课。
4. 模式识别,机器学习,神经网络,算法之类的资料。 比如:马尔可夫模型,随机森林,
pattern recognition and machine learning,bishop 2006这本书不错,讲的很清楚。
中文翻译版据说草稿三年前就提交上去了,不过还没审批通过。但看英文版有看英文版的好处,搜一下爱问有pdf。
5. 随机森林算法是什么
随机森林是一种比较新的机器学习模型。
经典的机器学习模型是神经网络,有半个多世纪的历史了。神经网络预测精确,但是计算量很大。上世纪八十年代Breiman等人发明分类树的算法(Breiman et al. 1984),通过反复二分数据进行分类或回归,计算量大大降低。
2001年Breiman把分类树组合成随机森林(Breiman 2001a),即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果。随机森林在运算量没有显着提高的前提下提高了预测精度。
随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用(Breiman 2001b),被誉为当前最好的算法之一(Iverson et al. 2008)。
随机森林优点:
随机森林是一个最近比较火的算法,它有很多的优点:
a、在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合。
b、在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力。
c、它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化。
6. 求问随机森林算法的简单实现过程
随机森林(Random forest)指的是利用多棵树对样本进行训练并预测的一种分类器。 并且其输出的类别是由个别树输出的类别的众数而定。在机器学习中有一个地位很重要的包scikit-learn可实现随机森林算法。
原理:(随机森林的分类预测和回归预测sklearn.ensemble.RandomForestRegressor方法)
(1)给定训练集S,测试集T,特征维数F。确定参数:使用到的CART的数量t,每棵树的深度d,每个节点使用到的特征数量f,终止条件:节点上最少样本数s,节点上最少的信息增益m,对于第1-t棵树,i=1-t:
(2)从S中有放回的抽取大小和S一样的训练集S(i),作为根节点的样本,从根节点开始训练
(3)如果当前节点上达到终止条件,则设置当前节点为叶子节点,如果是分类问题,该叶子节点的预测输出为当前节点样本集合中数量最多的那一类c(j),概率p为c(j)占当前样本集的比例;如果是回归问题,预测输出为当前节点样本集各个样本值的平均值。然后继续训练其他节点。如果当前节点没有达到终止条件,则从F维特征中无放回的随机选取f维特征。利用这f维特征,寻找分类效果最好的一维特征k及其阈值th,当前节点上样本第k维特征小于th的样本被划分到左节点,其余的被划分到右节点。继续训练其他节点。
(4)重复(2)(3)直到所有节点都训练过了或者被标记为叶子节点。
(5)重复(2),(3),(4)直到所有CART都被训练过。
随机森林的简单实现过程如下:
一、 开发环境、编译环境:
PyCharm Community Edition 2016.2.3
python2.7.10
二、 所用库及安装方法:
pandas[python自带]
sklearn:命令行pip install sklearn;如果没有安装pip,先使用easy_install pip安装pip;如果在MAC上没有权限,使用sudo pip install sklearn;
三、 代码介绍
1. 使用pandas读取本地excel的训练集和测试集,将属性集赋给X_train和Y_train;将要预测的集合赋给X_test和Y_test;
2. 使用DictVectorizer对数据进行规范化、标准化
3. 生成RandomForestRegressor对象,并将训练集传入fit方法中进行训练
4. 调用predict函数进行预测,并将结果存入y_predict变量中;
5. 使用mean_squared_error、score方法输出MSE、NMSE值对拟合度、稳定度进行分析;输出feature_importance,对影响最终结果的属性进行分析;
6. 详细代码见附录
四、 附录
# coding:utf-8
import pandas as pd
data_train = pd.read_excel('/Users/xiaoliu/Desktop/data_train.xlsx')
X_train = data_train[['CPI', 'GDP', 'PPI', 'AJR', 'BJFJ', 'FBDR', 'PCFD', 'PCFDED', 'BDR']]
y_train = data_train['FJ']
data_test = pd.read_excel('/Users/xiaoliu/Desktop/data_test.xlsx')
X_test = data_test[['CPI', 'GDP', 'PPI', 'AJR', 'BJFJ', 'FBDR', 'PCFD', 'PCFDED', 'BDR']]
y_test = data_test['FJ']
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='records'))
X_test = vec.transform(X_test.to_dict(orient='records'))
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
rf.fit(X_train,y_train)
y_predict = rf.predict(X_test)
print 'predict value:',y_predict
from sklearn.metrics import mean_squared_error
print 'MSE:', mean_squared_error(y_test, y_predict)
print 'NMES:',rf.score(X_test, y_test)
print rf.feature_importances_
7. 随机森林算法是什么
随机森林算法是以决策树为基学习器构建bagging的基础上,进一步在决策树的训练过程中引入随机属性的算法。
在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。
而 "Random Forests" 是他们的商标。 这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造决策树的集合。
随机森林算法之根据下列算法而建造每棵树:
用N来表示训练用例(样本)的个数,M表示特征数目。
输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。
从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。
对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据这m个特征,计算其最佳的分裂方式。
每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用)。
8. 机器学习一般常用的算法有哪些
机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。
一、线性回归
一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。
二、Logistic 回归
它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。
三、线性判别分析(LDA)
在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。
四、决策树
决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。
五、朴素贝叶斯
其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。
六、K近邻算法
K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。
七、Boosting 和 AdaBoost
首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显着的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。
八、学习向量量化算法(简称 LVQ)
学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求
9. 我想知道随机聚类森林算法和随机森林算法有什么不同,希望大家可以帮助我,谢谢。
通常随机森林聚类算法指代的是语义纹元森林,而随机森林算法是通常理解的基于决策树的组合分类器算法