A. 求数组的最大子数组值和最长公共子序列问题
a) 最长公共子序列的结构
若用穷举搜索法,耗时太长,算法需要指数时间。
易证最长公共子序列问题也有最优子结构性质
设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>,则:
i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;
ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;
iii. 若xm≠yn且zk≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=<x1, x2, …, xm-1>,Yn-1=<y1, y2, …, yn-1>,Zk-1=<z1, z2, …, zk-1>。
最长公共子序列问题具有最优子结构性质。
B. 最长公共子序列的应用
最长公共子序列是一个十分实用的问题,它可以描述两段文字之间的“相似度”,即它们的雷同程度,从而能够用来辨别抄袭。对一段文字进行修改之后,计算改动前后文字的最长公共子序列,将除此子序列外的部分提取出来,这种方法判断修改的部分,往往十分准确。简而言之,网络知道、网络都用得上。
C. 动态规划 最长公共子序列 过程图解
首先需要科普一下,最长公共子序列(longest common sequence)和最长公共子串(longest common substring)不是一回事儿。
这里给出一个例子:有两个母串
cnblogs
belong
比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence,LCS),顾名思义,是指在所有的子序列中最长的那一个。
子串是要求更严格的一种子序列, 要求在母串中连续地出现 。
在上述例子的中,最长公共子序列为blog(cnblogs,belong),最长公共子串为lo(cnblogs, belong)。
给一个图再解释一下:
如上图,给定的字符序列: {a,b,c,d,e,f,g,h},它的子序列示例: {a,c,e,f} 即元素b,d,g,h被去掉后,保持原有的元素序列所得到的结果就是子序列。同理,{a,h},{c,d,e}等都是它的子序列。
它的子串示例:{c,d,e,f} 即连续元素c,d,e,f组成的串是给定序列的子串。同理,{a,b,c,d},{g,h}等都是它的子串。
这个问题说明白后,最长公共子序列(以下都简称LCS)就很好理解了。
给定序列s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2},s1和s2的相同子序列,且该子序列的长度最长,即是LCS。
s1和s2的其中一个最长公共子序列是 {3,4,6,7,8}
求解LCS问题,不能使用暴力搜索方法。 一个长度为n的序列拥有 2的n次方个子序列,它的时间复杂度是指数阶 ,太恐怖了。解决LCS问题,需要借助动态规划的思想。
动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。 为了避免大量的重复计算,节省时间,我们引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。
解决LCS问题,需要把原问题分解成若干个子问题,所以需要刻画LCS的特征。
设A=“a0,a1,…,am”,B=“b0,b1,…,bn”,且Z=“z0,z1,…,zk”为它们的最长公共子序列。不难证明有以下性质:
如果am=bn,则zk=am=bn,且“z0,z1,…,z(k-1)”是“a0,a1,…,a(m-1)”和“b0,b1,…,b(n-1)”的一个最长公共子序列;
如果am!=bn,则若zk!=am,蕴涵“z0,z1,…,zk”是“a0,a1,…,a(m-1)”和“b0,b1,…,bn”的一个最长公共子序列;
如果am!=bn,则若zk!=bn,蕴涵“z0,z1,…,zk”是“a0,a1,…,am”和“b0,b1,…,b(n-1)”的一个最长公共子序列。
有些同学,一看性质就容易晕菜,所以我给出一个图来让这些同学理解一下:
以我在第1小节举的例子(S1={1,3,4,5,6,7,7,8}和S2={3,5,7,4,8,6,7,8,2}),并结合上图来说:
假如S1的最后一个元素 与 S2的最后一个元素相等,那么S1和S2的LCS就等于 {S1减去最后一个元素} 与 {S2减去最后一个元素} 的 LCS 再加上 S1和S2相等的最后一个元素。
假如S1的最后一个元素 与 S2的最后一个元素不等(本例子就是属于这种情况),那么S1和S2的LCS就等于 : {S1减去最后一个元素} 与 S2 的LCS, {S2减去最后一个元素} 与 S1 的LCS 中的最大的那个序列。
假设Z=<z1,z2,⋯,zk>是X与Y的LCS, 我们观察到
如果Xm=Yn,则Zk=Xm=Yn,有Zk−1是Xm−1与Yn−1的LCS;
如果Xm≠Yn,则Zk是Xm与Yn−1的LCS,或者是Xm−1与Yn的LCS。
因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中, 重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。
DP求解LCS
用二维数组c[i][j]记录串x1x2⋯xi与y1y2⋯yj的LCS长度,则可得到状态转移方程
以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}为例。我们借用《算法导论》中的推导图:
图中的空白格子需要填上相应的数字(这个数字就是c[i,j]的定义,记录的LCS的长度值)。填的规则依据递归公式,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。首先初始化该表:
S1的元素3 与 S2的元素5 不等,c[2,2] =max(c[1,2],c[2,1]),图中c[1,2] 和 c[2,1] 背景色为浅黄色。
继续填充:
至此,该表填完。根据性质,c[8,9] = S1 和 S2 的 LCS的长度,即为5。
本文S1和S2的最LCS并不是只有1个,本文并不是着重讲输出两个序列的所有LCS,只是介绍如何通过上表,输出其中一个LCS。
我们根据递归公式构建了上表,我们将从最后一个元素c[8][9]倒推出S1和S2的LCS。
c[8][9] = 5,且S1[8] != S2[9],所以倒推回去,c[8][9]的值来源于c[8][8]的值(因为c[8][8] > c[7][9])。
c[8][8] = 5, 且S1[8] = S2[8], 所以倒推回去,c[8][8]的值来源于 c[7][7]。
以此类推,如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,这里请都选择一个方向(之后遇到这样的情况,也选择相同的方向)。
这就是倒推回去的路径,棕色方格为相等元素,即LCS = {3,4,6,7,8},这是其中一个结果。
如果如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,选择另一个方向,会得到另一个结果。
即LCS ={3,5,7,7,8}。
构建c[i][j]表需要Θ(mn),输出1个LCS的序列需要Θ(m+n)。
参考:
https://blog.csdn.net/hrn1216/article/details/51534607
https://blog.csdn.net/u012102306/article/details/53184446
D. C语言实现最长公共子串与最长公共子序列
给定两个字符串s1="GeeksforGeeks",s2="GeeksQuizGo",则它们的最长公共子串为“Geeks”,长度为5。
运用动态规划的思想,将两个字符串映射为一张二维表,表格中的值代表到当前为止的最长公共子串的值,如下图所示:
生成这张表的步骤(假设这张表为t[][], r为行标,c为列标):
Code
整个算法的时间复杂度为O(len1 * len2),len1与len2分别为两个字符串的长度。
最长公共子序列与最长公共子串的区别是,最长公共子序列不要求“连续匹配”,它的目的是找到两个字符串中最大的公共部分。依然以s1="GeeksforGeeks",s2="GeeksQuizGo"为例,它们的最长公共子序列为“Geekso”和“GeeksG”,长度为6。
它的二维表如下所示:
它的生成步骤与最长公共子序列的最大不同在第3步,最长公共子序列在遇到s1[r] != s2[c]情况时,不会将t[r][c]重置为0,而是选择Max(t[r-1][c], t[r][c-1])作为新值,即它一直保存着前面已比较序列的最长公共序列值。