㈠ 遗传算法的基本原理
遗传算法本质上是对染色体模式所进行的一系列运算,即通过选择算子将当前种群中的优良模式遗传到下一代种群中,利用交叉算子进行模式重组,利用变异算子进行模式突变。
㈡ 个性化推荐算法的四大策略02
在复杂的推荐系统中,推荐算法作为其最核心、最关键的部分,很大程度上决定了推荐系统性能的好坏,且重点体现在数据决策层。
在个性化推荐系统中,简单推荐策略主要分为:基于热门推荐推荐、基于基本信息推荐、基于内容推荐、基于关联规则推荐。
热门推荐,顾名思义就是使用统计的方法将最热门的物品进行推荐,越热门的物品被点击的可能性越大。
基于基本信息推荐是根据用户的基本信息如:领域、职位、工作年龄、性别和所在地等给用户推荐感兴趣或者相关的内容,比如年龄-关联电影表、收入-关联商品类型表,性别-文章关联表等等。
因为基于热门推荐与基于基本信息推荐使用比较简单,所以这两个推荐策略应用比较广泛。
基于内容推荐是指(Content Based Recommandation)利用用户和物品的相关信息,例如前述用户和物品画像信息及用户对物品的行为构建的模型,例如浏览、点击、打电话、收藏、评论、下单等。内容推荐算法根据用户行为推断用户偏好,并为用户推荐相同偏好的物品。
基于内容推荐的计算过程一般分为四个步骤:
由这些共性属性查找其他物品,并实施推荐。
基于关联规则推荐(Association Rules)是通过数据挖掘的方法找到物品之间的相关关系,再进行标签推荐,比如大家所熟知的“啤酒”和“尿布”,就是某超市工作人员通过对顾客的购物清单进行分析后,才发现了啤酒和尿布之间的共现关系。
而衡量物品之间的关联性时,主要看支持度、置信度和提升度这三大指标。
支持度表示 AB 共现情况占所有情况的比例,则有表达式 Support(A->B)=P(A&B),它往往用来评估搜索词当中该词出现的概率。
置信度表示 AB 共现情况占 A 情况的比例,其表达式为 Confidence(A->B)=P(A&B)/P(A)。
提升度表示以 A 为前提下 B 出现的情况与 B 情况的比例,表达式为 Lift(A->B)=P(B|A)/P(B) ,它往往用来评估推荐效果。
在计算 Lift(A->B) 时,主要出现以下三种情况:
Lift(A->B)>1 时,说明搜索 A 时推荐 B 比直接推荐 B 的效果更好
Lift(A->B)=1 时,说明搜索 A 和搜素 B 属于独立事件,二者没什么关系
Lift(A->B)<1 时,说明搜索 A 和搜索 B 负相关,搜索 A 还不如不去推荐 B。
㈢ 数据结构中评价算法的两个重要指标是什么
数据结构中评价算法的两个重要指标是时间复杂度和空间复杂度。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
1、时间复杂度:
算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。
2、空间复杂度:
算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
(3)算法策略评估扩展阅读:
评估算法效率的方法:
1、事后统计方法
这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。
2、事前分析估算方法
在计算机程序编写前,依据统计方法对算法进行估算。经过总结,可以发现一个高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:算法采用的策略、编译产生的代码质量、问题的输入规模、机器执行指令的速度。
参考资料来源:网络-算法