㈠ cmake交叉编译参数toolchain
CMake给交叉编译预留了一个很好的变量即 CMAKE_TOOLCHAIN_FILE ,它定义了一个文件的路径,这个文件即toolChain,里面set了一系列你需要改变的变量和属性,包括 C_COMPILER , CXX_COMPILER 。CMake为了不让用户每次交叉编译都要重新输入这些命令,因此它带来toolChain机制,简而言之就是一个cmake脚本,内嵌了你需要改变以及需要set的所有交叉环境的设置。
这里面也牵扯了一些相关的变量设置,在这里我通过自己的项目,简单介绍下几个比较重要的:
添加链接参数
买火车票、高铁票、机票,订酒店都打9折的出行工具TRIP, 点击注册
㈡ 如何使用CMake进行交叉编译
cmake交叉编译配置
很多时候,我们在开发的时候是面对嵌入式平台,因此由于资源的限制需要用到相关的交叉编译。即在你host宿主机上要生成target目标机的程序。里面牵扯到相关头文件的切换和编译器的选择以及环境变量的改变等,我今天仅仅简单介绍下相关CMake在面对交叉编译的时候,需要做的一些准备工作。
CMake给交叉编译预留了一个很好的变量CMAKE_TOOLCHAIN_FILE,它定义了一个文件的路径,这个文件即toolChain,里面set了一系列你需要改变的变量和属性,包括C_COMPILER,CXX_COMPILER,如果用Qt的话需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的话需要更改的BOOST_ROOT(具体查看相关Findxxx.cmake里面指定的路径)。CMake为了不让用户每次交叉编译都要重新输入这些命令,因此它带来toolChain机制,简而言之就是一个cmake脚本,内嵌了你需要改变以及需要set的所有交叉环境的设置。
toolChain脚本中设置的几个重要变量
1.CMAKE_SYSTEM_NAME:
即你目标机target所在的操作系统名称,比如ARM或者linux你就需要写"Linux",如果Windows平台你就写"Windows",如果你的嵌入式平台没有相关OS你即需要写成"Generic",只有当CMAKE_SYSTEM_NAME这个变量被设置了,CMake才认为此时正在交叉编译,它会额外设置一个变量CMAKE_CROSSCOMPILING为TRUE.
2. CMAKE_C_COMPILER:
顾名思义,即C语言编译器,这里可以将变量设置成完整路径或者文件名,设置成完整路径有一个好处就是CMake会去这个路径下去寻找编译相关的其他工具比如linker,binutils等,如果你写的文件名带有arm-elf等等前缀,CMake会识别到并且去寻找相关的交叉编译器。
3. CMAKE_CXX_COMPILER:
同上,此时代表的是C++编译器。
4. CMAKE_FIND_ROOT_PATH:
指定了一个或者多个优先于其他搜索路径的搜索路径。比如你设置了/opt/arm/,所有的Find_xxx.cmake都会优先根据这个路径下的/usr/lib,/lib等进行查找,然后才会去你自己的/usr/lib和/lib进行查找,如果你有一些库是不被包含在/opt/arm里面的,你也可以显示指定多个值给CMAKE_FIND_ROOT_PATH,比如
set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)
该变量能够有效地重新定位在给定位置下进行搜索的根路径。该变量默认为空。当使用交叉编译时,该变量十分有用:用该变量指向目标环境的根目录,然后CMake将会在那里查找。
5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:
对FIND_PROGRAM()起作用,有三种取值,NEVER,ONLY,BOTH,第一个表示不在你CMAKE_FIND_ROOT_PATH下进行查找,第二个表示只在这个路径下查找,第三个表示先查找这个路径,再查找全局路径,对于这个变量来说,一般都是调用宿主机的程序,所以一般都设置成NEVER
6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:
对FIND_LIBRARY()起作用,表示在链接的时候的库的相关选项,因此这里需要设置成ONLY来保证我们的库是在交叉环境中找的.
7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:
对FIND_PATH()和FIND_FILE()起作用,一般来说也是ONLY,如果你想改变,一般也是在相关的FIND命令中增加option来改变局部设置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH
8. BOOST_ROOT:
对于需要boost库的用户来说,相关的boost库路径配置也需要设置,因此这里的路径即ARM下的boost路径,里面有include和lib。
9. QT_QMAKE_EXECUTABLE:
对于Qt用户来说,需要更改相关的qmake命令切换成嵌入式版本,因此这里需要指定成相应的qmake路径(指定到qmake本身)
toolChain demo
# this is required
SET(CMAKE_SYSTEM_NAME Linux)
# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)
# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)
# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)
这样就完成了相关toolChain的编写,之后,你可以灵活的选择到底采用宿主机版本还是开发机版本,之间的区别仅仅是一条-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做转移,但目标平台是同一个,你仅仅需要写一份toolChain放在一个地方,就可以给所有工程使用。
㈢ cmake中修改默认编译器的两个问题
在为交叉编译工程写cmake脚本时,可以在脚本里修改默认编译器的值。这种方法会碰到下面两个问题
例如,下面是一个经过简化后的CMakeLists.txt:
cmake+make的输出如下:
可以看到,set(CMAKE_CXX_COMPILER "/usr/bin/g++-4.8")命令之后,默认编译器已经由g++-5.5修改为了g++-4.8,且编译阶段确实也使用的是g++-4.8。但是此时CMAKE_CXX_COMPILER_VERSION的值仍然是5.5。
例如,顶层CMakeLists.txt中的内容如下:
子目录sub/CMakeLists.txt中只有一行:
cmake就会陷入死循环:
问题1:
问题2:
但是有个更简单的方法,可以解决以上所有问题:
在第一个project命令前,修改默认编译器的定义。
例如:
㈣ Impala中 LLVM 的交叉编译、调用过程
[TOC]
Impala 使用的 LLVM JIT,首先通过 Clang 将源码编译成了 LLVM IR 文件,然后通过脚本将 IR 文件装成可加载的二进制文件,BE 进程在运行过程中,通过 LLVM 的加载接口,把二进制文件加载进来使用。
待编译的文件通过codegen/ impala-ir.cpp 指定
impala-ir.cpp 文件主要的作用就是把需要产生 LLVM IR 的文件包含进来。
确定了哪些文件需要产生 LLVM IR 之后,就开始生成 IR 的二进制文件了。大致流程如下:
这个阶段生成最初始的bc文件,使用的是 CLang 的编译工具。命令可见codegen/CMakeFiles.txt
生成的结果是 impala-sse-tmp.bc 文件。
使用LLVM 优化工具,对原始的 bc 文件进行优化。命令可见codegen/CMakeFiles.txt
生成的结果就是impala-sse.bc。
这一步使用的是Impala 自定义的一个脚本 file2array.sh ,将优化后的 bc 文件转换为可加载的二进制c 文件。命令可见codegen/CMakeFiles.txt。
生成的结果是impala-sse-ir.cc。这个文件内部就是用一个数组存放二进制的值。
be 进程就是通过读取 impala_sse_llvm_ir 数组,把 LLVM IR加载到进程中。
file2array.sh 脚本其实就是使用 xxd -i < impala-sse-ir.cc 命令把bc 文件内容转成 c 语言的二进制形式。
LlvmCodeGen 类通过 CreateImpalaCodegen 接口实例化 codegen 对象。 CreateImpalaCodegen 最终会调用 CreateFromMemory ,在 CreateFromMemory 中就是将上文中生成的 impala_sse_llvm_ir 数组通过 LLVM 接口加载进来。
完成加载后,就可以通过 GetFunction 获取指定的 IR 函数了。
所有的函数名及描述,定义在 impala-ir-names.h 和 impala-ir-functions.h ,这两个文件是有对应关系的,都是通过gen_ir_descriptions.py生成。
impala-ir-names.h 定义了数组 FN_MAPPINGS ,存储函数名和枚举值的映射关系,如下:
impala-ir-functions.h定义了所有函数的枚举值,如下:
通过 GetFunction 获取函数的时候,因为有了 FN_MAPPINGS 存储的映射关系,可以通过传入枚举值或者字符串符号查找函数。
在 InitializeLlvm 方法中会使用 FN_MAPPINGS ,对加载的 llvm 函数进行校验。
㈤ 海思平台配置toolchain.cmake
交叉编译,在我们的host宿主机器上需要生成target目标机器的程序, 使用CMake的Toolchain管理这里的各种环境变量和配置,就很好.
CMake给交叉编译预留了一个变量-- CMAKE_TOOLCHAIN_FILE , 它定义了一个文件的路径, 这个文件就是 toolchain ,我们可以在里面配置 C_COMPILER , CXX_COMPILER ,如果用Qt的话需要更改 QT_QMAKE_EXECUTABLE 以及如果用 BOOST 的话需要更改的 BOOST_ROOT (具体查看相关 Findxxx.cmake 里面指定的路径), 因此,这个 toolchain 内嵌了一系列需要改变并且需要set的交叉环境的设置.
下面归纳一些比较重要的:
下面是一个常规的配置
这样就完成了相关toolChain的编写,之后,你可以灵活的选择到底采用宿主机版本还是开发机版本,之间的区别仅仅是一条 -DCMAKE_TOOLCHAIN_FILE=./cross.toolChain.cmake ,更爽的是,如果你有很多程序需要做转移,但目标平台是同一个,你仅仅需要写一份toolChain放在一个地方,就可以给所有工程使用。
稍微大一点的项目都会用到一些外部依赖库或者tool,CMake提供了 FIND_PROGRAM() , FIND_LIBRARY() , FIND_FILE() , FIND_PATH() and FIND_PACKAGE() 等命令来进行外部依赖的搜索查找。
但是有个问题,假如我们在给一个ARM处理器的移动设备做交叉编译,其中需要寻找 libjpeg.so ,假如 FIND_PACKAGE(JPEG) 返回的是 /usr/lib/libjpeg.so ,那么这就会有问题,因为找到的这个 so 库只是给你的宿主机系统(例如一个x86的Ubuntu主机)服务的,不能用于Arm系统。所以你需要告诉CMake去其它地方去查找,这个时候你就需要配置以下的变量了:
在工程中一般通过如下步骤, 进入工程文件, 创建 arm-himix200-linux.cmake 文件, 内容是:
然后创建build文件夹, 进行编译(注意, 需要指定 CMAKE_MAKE_PROGRAM , 不指定的话好像编译有问题...):
在我的 toolchain 文件中,我指定:
因为我项目中 CMakeLists.txt 中需要查找 OpenSSL 和 curl , 因此会用到CMake自带的 FindOpenSSL.cmake 和 FindCurl.cmake 两个脚本, 他们会用到 Findxxx 命令, 会去我指定的目录去搜索对应的库
https://www.cnblogs.com/rickyk/p/3875334.html
http://www.cmake.org/Wiki/CMake_Cross_Compiling