❶ 有没有人在mac上安装过linuxx86的交叉编译器gcc
有。可以通过在Mac上安装虚拟机或使用Docker等容器技术来模拟Linux环境,并在其中安装gcc进行交叉编译,还可以考虑使用MacPorts或逗消Homebrew等包管理器来安装gcc。Mac是苹果公司自1984年起以Macintosh开始开发的个人锋指唤消费型计算机,如:iMac、Macmini、MacbookAir、MacbookPro、银凯Macbook、MacPro等计算机,是一套完备而独立的操作系统。
❷ 32 位支持:使用 GCC 交叉编译
如果你是一个开发者,要创建二进制软件包,像一个 RPM、DEB、Flatpak 或 Snap 软件包,你不得不为各种不同的目标平台编译代码。典型的编译目标包括 32 位和 64 位的 x86 和 ARM。你可以在不同的物理或虚拟机器上完成你的构建,但这需要你为何几个系统。作为代替,你可以使用 GNU 编译器集合 ( GCC ) 来交叉编译,在单一的构建机器上为几个不同的 CPU 架构产生二进制文件。
假设你有一个想要交叉编译的简单的掷骰子 游戏 。在大多数系统上,以 C 语言来编写这个相对简单,出于给添加现实的复杂性的目的,我以 C++ 语言写这个示例,所以程序依赖于一些不在 C 语言中东西 (具体来说就是 iostream)。
在你的系统上使用 g++ 命令编译它:
然后,运行它来确认其工作:
你可以使用 file 命令来查看你刚刚生产的二进制文件的类型:
同样重要,使用 ldd 命令来查看它链接哪些库:
从这些测试中,你已经确认了两件事:你刚刚运行的二进制文件是 64 位的,并且它链接的是 64 位库。
这意味着,为实现 32 位交叉编译,你必需告诉 g++ 来:
为编译成 32 位二进制,你需要在你的系统上安装 32 位的库和头文件。如果你运行一个纯 64 位系统,那么,你没有 32 位的库或头文件,并且需要安装一个基础集合。最起码,你需要 C 和 C++ 库(glibc 和 libstdc++)以及 GCC 库(libgcc)的 32 位版本。这些软件包的名称可能在每个发行版中不同。在 Slackware 系统上,一个纯 64 位的带有 32 位兼容的发行版,可以从 Alien BOB 提供的 multilib 软件包中获得。在 Fedora、CentOS 和 RHEL 系统上:
不管你正在使用什么系统,你同样必须安装一些你工程使用的 32 位库。例如,如果你在你的工程中包含 yaml-cpp,那么,在编译工程前,你必需安装 yaml-cpp 的 32 位版本,或者,在很多系统上,安装 yaml-cpp 的开发软件包(例如,在 Fedora 系统上的 yaml-cpp-devel)。
一旦这些处理好了,编译是相当简单的:
-m32 标志告诉 GCC 以 32 位模式编译。-march=i686 选项进一步定义来使用哪种最优化类型(参考 info gcc 了解选项列表)。-L 标志设置你希望 GCC 来链接的库的路径。对于 32 位来说通常是 /usr/lib,不过,这依赖于你的系统是如何设置的,它可以是 /usr/lib32,甚至 /opt/usr/lib,或者任何你知道存放你的 32 位库的地方。
在代码编译后,查看你的构建的证据:
接着,当然, ldd ./dice32 也会指向你的 32 位库。
在 64 位相同的处理器家族上允许 GCC 做出很多关于如何编译代码的假设来编译 32 位软件。如果你需要为完全不同的处理器编译,你必需安装适当的交叉构建实用程序。安装哪种实用程序取决于你正在编译的东西。这个过程比为相同的 CPU 家族编译更复杂一点。
当你为相同处理器家族交叉编译时,你可以期待找到与 32 位库集的相同的 64 位库集,因为你的 Linux 发行版是同时维护这二者的。当为一个完全不同的架构编译时,你可能不得不穷追你的代码所需要的库。你需要的版本可能不在你的发行版的存储库中,因为你的发行版可能不为你的目标系统提供软件包,或者它不在容易到达的位置提供所有的软件包。如果你正在编译的代码是你写的,那么你可能非常清楚它的依赖关系是什么,并清楚在哪里找到它们。如果代码是你下载的,并需要编译,那么你可能不熟悉它的要求。在这种情况下,研究正确编译代码需要什么(它们通常被列在 README 或 INSTALL 文件中,当然也出现在源文件代码自身之中),然后收集需要的组件。
例如,如果你需要为 ARM 编译 C 代码,你必须首先在 Fedora 或 RHEL 上安装 gcc-arm-linux-gnu(32 位)或 gcc-aarch64-linux-gnu(64 位);或者,在 Ubuntu 上安装 arm-linux-gnueabi-gcc 和 binutils-arm-linux-gnueabi。这提供你需要用来构建(至少)一个简单的 C 程序的命令和库。此外,你需要你的代码使用的任何库。你可以在惯常的位置(大多数系统上在 /usr/include)放置头文件,或者,你可以放置它们在一个你选择的目录,并使用 -I 选项将 GCC 指向它。
当编译时,不使用标准的 gcc 或 g++ 命令。作为代替,使用你安装的 GCC 实用程序。例如:
验证你构建的内容:
这是一个如何使用交叉编译的简单的示例。在真实的生活中,你的源文件代码可能产生的不止于一个二进制文件。虽然你可以手动管理,在这里手动管理可能不是好的正当理由。在我接下来的文章中,我将说明 GNU 自动工具,GNU 自动工具做了使你的代码可移植的大部分工作。
via: https://opensource.com/article/19/7/cross-compiling-gcc
作者: Seth Kenlon 选题: lujun9972 译者: robsean 校对: wxy
❸ 怎么用gcc编译文件
在终端中输入 gcc 文件名 -o 目标文件名x0dx0a然后 ./目标文件名 就行了,没有目标文件名,自动存为 ax0dx0a执行 ./a 就行了。x0dx0ax0dx0a在使用Gcc编译器的时候,我们必须给出一系列必要的调用参数和文件名称。GCC编译器的调用参数大约有100多个,其中多数参数我们可能根本就用不到,这里只介绍其中最基本、最常用的参数。x0dx0aGCC最基本的用法是∶gcc [options] [filenames]x0dx0a其中options就是编译器所需要的参数,filenames给出相关的文件名称。x0dx0a-c,只编译,不连接成为可执行文件,编译器只是由输入的.c等源代码文件生成.o为后缀的目标文件,通常用于编译不包含主程序的子程序文件。x0dx0a-o output_filename,确定输出文件的名称为output_filename,同时这个名称不能和源文件同名。如果不给出这个选项,gcc就给出预设的可执行文件a.out。x0dx0a-g,产生符号调试工具(GNU的gdb)所必要的符号资讯,要想对源代码进行调试,我们就必须加入这个选项。x0dx0a-O,对程序进行优化编译、连接,采用这个选项,整个源代码会在编译、连接过程中进行优化处理,这样产生的可执行文件的执行效率可以提高,但是,编译、连接的速度就相应地要慢一些。x0dx0a-O2,比-O更好的优化编译、连接,当然整个编译、连接过程会更慢。x0dx0a-Idirname,将dirname所指出的目录加入到程序头文件目录列表中,是在预编译过程中使用的参数。C程序中的头文件包含两种情况∶x0dx0aA)#include
❹ 树莓派Linux内核编译选项如何开启TPM 2.0
本文更新于2018-08-11
首发于, 文章链接 http://www.jianshu.com/p/174844b99716
同步至GitHub: https://github.com/liuqun/linux/wiki
定制树莓派内核源码, 通过树莓派SPI接口加载并访问TPM2.0设备
所需硬件: X86主机一台, 树莓派3-B型号开发板一块, 大容量Micro-SD卡+USB读卡器一个, 英飞凌TPM2.0评估板一套
所需软件: 任意版本树莓派固件(推荐使用 最新版本 ), Ubuntu Linux 虚拟机, gcc-arm-linux-gnueabihf 交叉编译器, libncurses5(编译Linux内核配置菜单界面)
取出树莓派的SD卡, 通过读卡器插入 Ubuntu 主机或将读卡器 USB 设备接入 VMware 虚拟机。Ubuntu 默认自动将 U 盘挂载到 /media/$USER/boot 和 /media/$USER/【根文件系统分区】
(以下为覆盖式安装, 如果不放心请自行备份SD卡上的原有内核及模块文件)
选中 5. Interfacing Options --- P4 SPI(启用/禁用SPI串口)
重启树莓派,开机后检查/dev/tpm0设备文件是否已经加载就绪
❺ 为什么x86和arm的架构不同,但是都能装linux呢,他们的编译时如何实现的。
rm架构和x86架构区别:
一、性能:
X86结构的电脑无论如何都比ARM结构的系统在性能方面要快得多、强得多。X86的CPU随便就是1G以上、双核、四核大行其道,通常使用45nm(甚至更高级)制程的工艺进行生产;
而ARM方面:CPU通常是几百兆,最近才出现1G左右的CPU,制程通常使用不到65nm制程的工艺,可以说在性能和生产工艺方面ARM根本不是X86结构系统的对手。
但ARM的优势不在于性能强大而在于效率,ARM采用RISC流水线指令集,在完成综合性工作方面根本就处于劣势,而在一些任务相对固定的应用场合其优势就能发挥得淋漓尽致。
二、扩展能力:
X86结构的电脑采用“桥”的方式与扩展设备(如:硬盘、内存等)进行连接,而且x86结构的电脑出现了近30年,其配套扩展的设备种类多、价格也比较便宜,所以x86结构的电脑能很容易进行性能扩展,如增加内存、硬盘等。
ARM结构的电脑是通过专用的数据接口使CPU与数据存储设备进行连接,所以ARM的存储、内存等性能扩展难以进行(一般在产品设计时已经定好其内存及数据存储的容量),所以采用ARM结构的系统,一般不考虑扩展。基本奉行“够用就好”的原则。
三实现编译:
因为linux是系统,他支持现在大多数的结构体系。而要使他移植到相应的不同的硬件平台上时,需要对内核源码进行相对应的交叉编译处理,然后才能进行烧写运行,因为都有驱动只要那个系统有对应平台的驱动就可以。
(5)树莓派gcc编译选项x86扩展阅读:
Linux常用命令
1、pwd命令该命令的英文解释为print working directory(打印工作目录)。
2、输入pwd命令,Linux会输出当前目录。
3、cd命令cd命令用来改变所在目录。
4、cd / 转到根目录中
5、cd ~ 转到/home/user用户目录下
6、cd /usr 转到根目录下的usr目录中-------------绝对路径
7、cd test 转到当前目录下的test子目录中-------相对路径
8、cat命令可以用来合并文件,也可以用来在屏幕上显示整个文件的内容。
9、cat snow.txt 该命令显示文件snow.txt的内容,ctrl+D退出cat。