导航:首页 > 源码编译 > A星算法实验

A星算法实验

发布时间:2023-12-14 22:17:30

① 什么是A搜索算法

A*搜索算法,俗称A星算法,作为启发式搜索算法中的一种,这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。

② A*算法用于路径规划,有什么缺点

缺点:A*算法通过比较当前路径栅格的8个邻居的启发式函数值F来逐步确定下一个路径栅格,当存在多个最小值时A*算法不能保证搜索的路径最优。
A*算法;A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好。A*[1] (A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法。注意是最有效的直接搜索算法。之后涌现了很多预处理算法(ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。公式表示为: f(n)=g(n)+h(n),其中 f(n) 是从初始点经由节点n到目标点的估价函数,g(n) 是在状态空间中从初始节点到n节点的实际代价,h(n) 是从n到目标节点最佳路径的估计代价。保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取:估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。并且如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。如果 估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

③ A星搜索算法

A星算法是定义了一个函数f,公式为:
f = g + h
其中g函数代表目前为止从出发地到达该节点的成本,h函数是预估的当前节点到到目的地的成本,即
g(path) = path cost
h(path) = h(s) = estimated distance to goal
朝着使函数f具有最小值的路径拓展,该算法可以找到消耗最小消耗的路径

注意A星算法并不是总能找到最优解,能否找到最优解依赖于h函数,条件是

④ 人工智能 A*算法原理

A 算法是启发式算法重要的一种,主要是用于在两点之间选择一个最优路径,而A 的实现也是通过一个估值函数

上图中这个熊到树叶的 曼哈顿距离 就是蓝色线所表示的距离,这其中不考虑障碍物,假如上图每一个方格长度为1,那么此时的熊的曼哈顿距离就为9.
起点(X1,Y1),终点(X2,Y2),H=|X2-X1|+|Y2-Y1|
我们也可以通过几何坐标点来算出曼哈顿距离,还是以上图为例,左下角为(0,0)点,熊的位置为(1,4),树叶的位置为(7,1),那么H=|7-1|+|1-4|=9。

还是以上图为例,比如刚开始熊位置我们会加入到CLOSE列表中,而熊四周它可以移动到的点位我们会加入到OPEN列表中,并对熊四周的8个节点进行F=G+H这样的估值运算,然后在这8个节点中选中一个F值为最小的节点,然后把再把这个节点从OPEN列表中删除,加入到Close列表中,从接着在对这个节点的四周8个节点进行一个估值运算,再接着依次运算,这样说大家可能不是太理解,我会在下边做详细解释。

从起点到终点,我们通过A星算法来找出最优路径

我们把每一个方格的长度定义为1,那从起始点到5位置的代价就是1,到3的代价为1.41,定义好了我们接着看上图,接着运算

第一步我们会把起始点四周的点加入OPEN列表中然后进行一个估值运算,运算结果如上图,这其中大家看到一个小箭头都指向了起点,这个箭头就是指向父节点,而open列表的G值都是根据这个进行计算的,意思就是我从上一个父节点运行到此处时所需要的总代价,如果指向不一样可能G值就不一样,上图中我们经过计算发现1点F值是7.41是最小的,那我们就选中这个点,并把1点从OPEN列表中删除,加入到CLOSE列表中,但是我们在往下运算的时候发现1点的四周,2点,3点和起始点这三个要怎么处理,首先起始点已经加入到了CLOSE,他就不需要再进行这种运算,这就是CLOSE列表的作用,而2点和3点我们也可以对他进行运算,2点的运算,我们从1移动到2点的时候,他需要的代价也就是G值会变成2.41,而H值是不会变的F=2.41+7=9.41,这个值我们发现大于原来的的F值,那我们就不能对他进行改变(把父节点指向1,把F值改为9.41,因为我们一直追求的是F值最小化),3点也同理。

在对1点四周进行运算后整个OPEN列表中有两个点2点和3点的F值都是7.41,此时我们系统就可能随机选择一个点然后进行下一步运算,现在我们选中的是3点,然后对3点的四周进行运算,结果是四周的OPEN点位如果把父节点指向3点值时F值都比原来的大,所以不发生改变。我们在看整个OPEN列表中,也就2点的7.41值是最小的,那我们就选中2点接着运算。

我们在上一部运算中选中的是1点,上图没有把2点加入OPEN列表,因为有障碍物的阻挡从1点他移动不到2点,所以没有把2点加入到OPEN列表中,整个OPEN列表中3的F=8是最小的,我们就选中3,我们对3点四周进行运算是我们发现4点经过计算G=1+1=2,F=2+6=8所以此时4点要进行改变,F变为8并把箭头指向3点(就是把4点的父节点变为3),如下图

我们就按照这种方法一直进行运算,最后 的运算结果如下图

而我们通过目标点位根据箭头(父节点),一步一步向前寻找最后我们发现了一条指向起点的路径,这个就是我们所需要的最优路径。 如下图的白色选中区域

但是我们还要注意几点

最优路径有2个

这是我对A*算法的一些理解,有些地方可能有BUG,欢迎大家指出,共同学习。

阅读全文

与A星算法实验相关的资料

热点内容
linuxgo开发环境 浏览:922
海康摄像萤石云服务器 浏览:814
安卓手机怎么改安卓版名 浏览:147
雅思听力807词汇pdf 浏览:897
黄豆私人加密 浏览:192
java分钟转换小时 浏览:245
易语言服务器如何提高 浏览:591
网站主机服务器地址查看 浏览:859
算法学不会能当程序员吗 浏览:119
程序员技术交流研究 浏览:814
javaresponse文件 浏览:734
linuxrar压缩文件夹 浏览:218
魅蓝手机连接不上服务器怎么回事 浏览:379
工行app怎么改已绑定银行卡 浏览:533
oppo芯片程序员 浏览:602
oppok3应用怎么加密 浏览:327
电脑软盘怎么加密码 浏览:815
服务器光交换机有什么用 浏览:708
app上怎么拍蛙小侠 浏览:217
志高聊天app怎么下载 浏览:635