导航:首页 > 源码编译 > 交叉编译生成elf

交叉编译生成elf

发布时间:2023-12-20 17:25:30

㈠ 如何将android linux烧到Raspberry Pi及其调试

一.Raspberry Pi入门向导。

可以在以下地址下载Raspberry向导


2.构建android framework

命令如下:

cd <your_android_path>

source build/envsetup.sh

lunch


显示lunch菜单如下:

You’re building on Linux


Lunch menu… pick a combo:

1. full-eng

2. full_x86-eng

3. simulator

4. full_rpi-eng

5. cyanogen_generic-eng

6. cyanogen_rpi-eng

选择第6个菜单。

然后进行编译

make -j8

等待编译成功,这可能需要几十分钟。


编译成功之后将”system”目录复制到root目录下,接下来我们可能会用到。

命令如下:

cd <your_android_path>

cp -r system out/target/proct/rpi/root


ps:编译时如果jdk版本不对,可将其改成jdk1.6


五.如何在Raspberry Pi上跑android linux内核?


1.准备一张存储空间2G以上的SD卡及相应读卡器。


2.下载arch linux镜像文件

用wget工具下载镜像文件:

wget http://files.velocix.com/c1410/images/archlinuxarm/archlinux-hf-2012-09-18/archlinux-hf-2012-09-18.zip

解压

unzip archlinux-hf-2012-09-18.zip

成功之后,你会在当前目录下发现一个镜像文件。


3.烧linux镜像文件。

sudo dd bs=4M if=archlinux-hf-2012-09-18.img of=/dev/sdb

sudo sync

ps:/dev/sdb是SD卡在主机上的设备文件。不同的电脑可能不同。


4.用android linux内核代替这个内核。

做完上述步骤之后,当你把SD卡插在电脑上,你会发现有两个分区:一个是引导区,另一个是文件系统区。

用android linux内核代替引导区的kernel.img。

cp -uv <your_android_linux_path>/arch/arm/boot/zImage <your_sdcard_boot_partition>/kernel.img


5.用android linux文件系统代替这个linux文件系统

rm -rf <your_sdcard_file_system_partition>

cp -r <your_android_source_code_path>/out/target/proct/rpi/root/* <your_sdcard_file_system_partition>


6.配置内核命令行cmdline.txt

Edit the <your_sdcard_boot_partition>/cmdling.txt, and replace “init=/…” with “init=/init”


7.做完这些之后就可以在Raspberry Pi上跑这个android linux内核。


六.如何为Android linux做一张可引导的SD卡


1.删除已有分区,如果没有就不用删了。

Command(m for help):p


Disk /dev/sdb: 15.7 GB, 15707668480 bytes

64 heads, 32 sectors/track, 14980 cylinders, total 30668085 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0×00000000


sudo fdisk/dev/sdb


Command(m for help):d

Partition number(1-4):1


Command(m for help):d

Selected partition 2


Command (m for help): p


Disk /dev/sdb: 15.7 GB, 15707668480 bytes

64 heads, 32 sectors/track, 14980 cylinders, total 30679040 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0×00000000

Device Boot Start End Blocks Id System


Command(m for help):w

ps:确定删除之后,卸掉SD卡,然后再装上。


以bytes问单位记下SD卡的大小。后面的步骤会用到。

然后进入”Expert mode”。


Command(m for help):x


将这个SD卡设置为255个磁面,63个扇区和磁柱数量(不同的SD/mmc卡有着不同的此柱数量)

Expert command (m for help): h

Number of heads (1-256, default 64): 255


Expert command (m for help): s

Number of sectors (1-63, default 32): 63


ps:在下一步开始前,先要计算磁柱数量,计算过程如下:

B:SD卡以bytes为单位的大小(前面已经记住了即:15707668480)

C:磁柱的数量

C=B/255/63/512


例如:我的SD卡大小是16G(15707668480)

C=15707668480/255/63/512=1909.68191721,约等于1909.


Expert command (m for help): c

Number of cylinders (1-1048576, default 14980): 1909

Expert command (m for help): r


2.新建分区

如果你的SD卡已经分区,请按照上述步骤删除分区。接下来,我们将创建两个分区,一个是引导区,用来存放内核镜像等文件;另一个文件系统区存放android linux文件系统。


Command (m for help): n

Partition type:

p primary (0 primary, 0 extended, 4 free)

e extended

Select (default p): p

Partition number (1-4, default 1):

Using default value 1

First sector (2048-30679039, default 2048):

Using default value 2048

Last sector, +sectors or +size{K,M,G} (2048-30679039, default 30679039): +128M

Command (m for help): t

Selected partition 1

Hex code (type L to list codes): c

Changed system type of partition 1 to c (W95 FAT32 (LBA))

Command (m for help): a

Partition number (1-4): 1

Command (m for help): n

Partition type:

p primary (1 primary, 0 extended, 3 free)

e extended

Select (default p): p

Partition number (1-4, default 2):

Using default value 2

First sector (264192-30679039, default 264192):

Using default value 264192

Last sector, +sectors or +size{K,M,G} (264192-30679039, default 30679039):

Using default value 30679039

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x

partitions, please see the fdisk manual page for additional

information.

Syncing disks.


ok,分区成功,现在我们有两个分区,接下我们对分区进行格式化。


3.格式化分区

对引导区进行格式化:


sudo mkfs.msdos -F 32 /dev/sdb1 -n BOOT

mkfs.msdos 3.0.12 (29 Oct 2011)


对文件系统区进行格式化:

sudo mkfs.ext3 /dev/sdb2 -L ROOTFS

mke2fs 1.42 (29-Nov-2011)

Filesystem label=ROOTFS

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

950976 inodes, 3801856 blocks

190092 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=3896508416

117 block groups

32768 blocks per group, 32768 fragments per group

8128 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done


4.设置引导区

引导区必须包含以下文件,你可以从官方镜像里获取(bootable/fat32 partition)也可以从书面步骤中复制过来:

bootcode.bin:第二阶段的引导程序,

loader.bin:第三阶段的引导程序,

start.elf:GPU二进制固件映像,

kernel.img操作系统的内核镜像文件,

cmdline.txt:传递给内核的参数.


5.设置root文件系统分区

ROOTFS分区包含android文件系统,是从<your_android_framework_path>/out/target/proct/rpi/root复制过来的。

cp -r <your_android_framework_path>/out/target/proct/rpi/root/* /media/ROOTFS/


6.完成上述步骤之后,将其放在Raspberry Pi上跑。


七.如何在Raspberry Pi使用adb?


1.查看网络

当android linux在Raspberry Pi运行时,切换到控制台,执行以下命令:

ifconfig eth0

记下ip地址。

如果不能找到ip,可以输入以下命令:/system/xbin/dhcp-eth0,来启动网络连接程序。

ps:如果屏幕没有显示控制台,只要按CTRL+ALT+F2即可切换到控制台。如果你想要切换到Android界面,只要按CTRL+ALT+F7即可。


2.远程连接adb服务器

在主机上执行以下命令即可与同一局域网的Raspberry Pi相连

adb connect ip

连接成功后,你就可以用adb工具输出日志,执行shell命令等。


3.也可以用数据线连接主机,直接在主机上调试。

进入调试的命令为:

screen /dev/ttyUSB0 115200


名词解释:

交叉编译(cross compile):交叉编译呢,简单地说,就是在一个平台上生成另一个平台上的可执行代码。这里需要注意的是所谓 平台,实际上包含两个概念:体系结构(Architecture)、操作系统(Operating System)。同一个体系结构可以运行不同的操作系统;同样,同一个操作系统也可以在不同的体系结构上运行。举例来说,我们常说的x86 Linux平台实际上是Intel x86体系结构和Linux for x86操作系统的统称;而x86 WinNT平台实际上是Intel x86体系结构和Windows NT for x86操作系统的简称。

㈡ 求从交叉编译器生成的elf文件中读取全局变量信息的函数

楼主,这个恐怕不是一个函数能解决的,ELF文件格式还是有点复杂的。 我以前做过类似的功能,从ELF文件中加载所有符号表信息,字符串信息,并下载代码。 我推荐你用一个开源的库:ELFIO。 我想这个库应该可以实现你的功能,只是你要去研究一下它的用法。 当然,你得首先对ELF文件格式有所了解。ELFIO库下载地址: http://sourceforge.net/projects/elfio/ ================================这是我以前写过的加载ELF中所有Section信息的例子: BOOL LoadELF(char* pFilename)
{
CString strName,tmp;
IELFI* pReader;

if ( ERR_ELFIO_NO_ERROR != ELFIO::GetInstance()->CreateELFI( &pReader ) ) {
Msg( "Can't create ELF reader.\r\n",2,0);
return FALSE;
}
if ( ERR_ELFIO_NO_ERROR != pReader->Load(pFilename ) ) {
Msg( "Can't open input elf file.\r\n",2,0);
return FALSE;
} int nSecNo = pReader->GetSectionsNum();
for (int i = 0; i < nSecNo; i++ )
{ // For all sections
const IELFISection* pSec = pReader->GetSection( i );
printf("%s\n",pSec->GetName().c_str());
Elf32_Half index= pSec->GetIndex() ;
std::string name = pSec->GetName() ;
Elf32_Word type =pSec->GetType() ;
Elf32_Addr addr = pSec->GetAddress() ;
Elf32_Word size = pSec->GetSize() ;
Elf32_Word link = pSec->GetLink() ;
Elf32_Word info = pSec->GetInfo() ;
Elf32_Word aa = pSec->GetAddrAlign() ;
Elf32_Word esize = pSec->GetEntrySize() ;
const char* p = pSec->GetData() ;
Elf32_Word flag = pSec->GetFlags() ;
strName = pSec->GetName().c_str();strName.MakeUpper();
//如果未指定section,读取所有SHF_EXECINSTR属性的Section
if(g_MapScetion.GetCount()==0)
{
if(flag&SHF_EXECINSTR)
LoadElfSection((BYTE*)pSec->GetData(),pSec->GetAddress(),pSec->GetSize(),pList,pAddInfo);
}
else
{
if(g_MapScetion.Lookup(strName,tmp))
LoadElfSection((BYTE*)pSec->GetData(),pSec->GetAddress(),pSec->GetSize(),pList,pAddInfo);
}

pSec->Release();
} pReader->Release();
return TRUE;
}

㈢ 交叉工具链的工具链的构建方法

通常构建交叉工具链有如下三种方法:
方法一 分步编译和安装交叉编译工具链所需要的库和源代码,最终生成交叉编译工具链。该方法相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用下列的方法二构建交叉工具链。
方法二 通过Crosstool脚本工具来实现一次编译,生成交叉编译工具链,该方法相对于方法一要简单许多,并且出错的机会也非常少,建议大多数情况下使用该方法构建交叉编译工具链。
方法三 直接通过网上下载已经制作好的交叉编译工具链。该方法的优点不用多说,当然是简单省事,但该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的,没有灵活性,所以构建所用的库以及编译器的版本也许并不适合你要编译的程序,同时也许会在使用时出现许多莫名其妙的错误,建议读者慎用此方法。
下面摘录一段:
DIY自己的GNU交叉工具链(i386-arm)
嵌入式设备由于不具备一定的处理器能力和存储空间,程序开发一般用PC来完成,然后将可执行文件下载到嵌入式系统中运行。这是嵌入式程序开发的不二选择——Host/target模式。但这引发了一个问题:由于Host和Target的处理器体系结构不同,我们不能直接用PC上既有的程序开发工具,必须使用跨平台开发工具,即在Host上生成能在Target上运行格式的目标文件。
与在PC上进行程序开发类似,嵌入式系统开发也需要编译器、链接器、解释程序等。本文讨论GNU跨平台开发工具链的建立,包括: ld, gas, ar, gcc, glibc.
自己建立交叉编译环境是一件很头疼的事(处理版本的依赖性, 漫长的编译过程...),如果你不想经历这样的痛苦,可以选择网上编译好了的工具链进行安装.如果你用的是Debian/Ubuntu的发行版, 推荐使用Emdebian. 如果使用uClinux, 也可安装arm-elf-tools.

㈣ 如何使用CMake进行交叉编译

cmake交叉编译配置

很多时候,我们在开发的时候是面对嵌入式平台,因此由于资源的限制需要用到相关的交叉编译。即在你host宿主机上要生成target目标机的程序。里面牵扯到相关头文件的切换和编译器的选择以及环境变量的改变等,我今天仅仅简单介绍下相关CMake在面对交叉编译的时候,需要做的一些准备工作。

CMake给交叉编译预留了一个很好的变量CMAKE_TOOLCHAIN_FILE,它定义了一个文件的路径,这个文件即toolChain,里面set了一系列你需要改变的变量和属性,包括C_COMPILER,CXX_COMPILER,如果用Qt的话需要更改QT_QMAKE_EXECUTABLE以及如果用BOOST的话需要更改的BOOST_ROOT(具体查看相关Findxxx.cmake里面指定的路径)。CMake为了不让用户每次交叉编译都要重新输入这些命令,因此它带来toolChain机制,简而言之就是一个cmake脚本,内嵌了你需要改变以及需要set的所有交叉环境的设置。

toolChain脚本中设置的几个重要变量

1.CMAKE_SYSTEM_NAME:

即你目标机target所在的操作系统名称,比如ARM或者Linux你就需要写"Linux",如果Windows平台你就写"Windows",如果你的嵌入式平台没有相关OS你即需要写成"Generic",只有当CMAKE_SYSTEM_NAME这个变量被设置了,CMake才认为此时正在交叉编译,它会额外设置一个变量CMAKE_CROSSCOMPILING为TRUE.

2. CMAKE_C_COMPILER:

顾名思义,即C语言编译器,这里可以将变量设置成完整路径或者文件名,设置成完整路径有一个好处就是CMake会去这个路径下去寻找编译相关的其他工具比如linker,binutils等,如果你写的文件名带有arm-elf等等前缀,CMake会识别到并且去寻找相关的交叉编译器。

3. CMAKE_CXX_COMPILER:

同上,此时代表的是C++编译器。

4. CMAKE_FIND_ROOT_PATH:

指定了一个或者多个优先于其他搜索路径的搜索路径。比如你设置了/opt/arm/,所有的Find_xxx.cmake都会优先根据这个路径下的/usr/lib,/lib等进行查找,然后才会去你自己的/usr/lib和/lib进行查找,如果你有一些库是不被包含在/opt/arm里面的,你也可以显示指定多个值给CMAKE_FIND_ROOT_PATH,比如

set(CMAKE_FIND_ROOT_PATH /opt/arm /opt/inst)

该变量能够有效地重新定位在给定位置下进行搜索的根路径。该变量默认为空。当使用交叉编译时,该变量十分有用:用该变量指向目标环境的根目录,然后CMake将会在那里查找。

5. CMAKE_FIND_ROOT_PATH_MODE_PROGRAM:

对FIND_PROGRAM()起作用,有三种取值,NEVER,ONLY,BOTH,第一个表示不在你CMAKE_FIND_ROOT_PATH下进行查找,第二个表示只在这个路径下查找,第三个表示先查找这个路径,再查找全局路径,对于这个变量来说,一般都是调用宿主机的程序,所以一般都设置成NEVER

6. CMAKE_FIND_ROOT_PATH_MODE_LIBRARY:

对FIND_LIBRARY()起作用,表示在链接的时候的库的相关选项,因此这里需要设置成ONLY来保证我们的库是在交叉环境中找的.

7. CMAKE_FIND_ROOT_PATH_MODE_INCLUDE:

对FIND_PATH()和FIND_FILE()起作用,一般来说也是ONLY,如果你想改变,一般也是在相关的FIND命令中增加option来改变局部设置,有NO_CMAKE_FIND_ROOT_PATH,ONLY_CMAKE_FIND_ROOT_PATH,BOTH_CMAKE_FIND_ROOT_PATH

8. BOOST_ROOT:

对于需要boost库的用户来说,相关的boost库路径配置也需要设置,因此这里的路径即ARM下的boost路径,里面有include和lib。

9. QT_QMAKE_EXECUTABLE:

对于Qt用户来说,需要更改相关的qmake命令切换成嵌入式版本,因此这里需要指定成相应的qmake路径(指定到qmake本身)

toolChain demo

# this is required
SET(CMAKE_SYSTEM_NAME Linux)

# specify the cross compiler
SET(CMAKE_C_COMPILER /opt/arm/usr/bin/ppc_74xx-gcc)
SET(CMAKE_CXX_COMPILER /opt/arm/usr/bin/ppc_74xx-g++)

# where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/arm/ppc_74xx /home/rickk/arm_inst)

# search for programs in the build host directories (not necessary)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
# for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

# configure Boost and Qt
SET(QT_QMAKE_EXECUTABLE /opt/qt-embedded/qmake)
SET(BOOST_ROOT /opt/boost_arm)

这样就完成了相关toolChain的编写,之后,你可以灵活的选择到底采用宿主机版本还是开发机版本,之间的区别仅仅是一条-DCMAKE_TOOLCHAIN_FILE=./toolChain.cmake,更爽的是,如果你有很多程序需要做转移,但目标平台是同一个,你仅仅需要写一份toolChain放在一个地方,就可以给所有工程使用。

㈤ 交叉编译器的举例

交叉编译
1、在Windows PC上,利用ADS(ARM开发环境),使用armcc编译器,则可编译出针对ARM CPU的可执行代码。
2、在Linux PC上,利用arm-linux-gcc编译器,可编译出针对Linux ARM平台的可执行代码。
3、在Windows PC上,利用cygwin环境,运行arm-elf-gcc编译器,可编译出针对ARM CPU的可执行代码。
4、在Windows系统上,利用Keil Uvison工具,开发出运行在89C51单片机上的程序。
5、在Windows系统上,利用CodeWarrior IDE工具,开发出运行在Freescale XS128单片机上的程序。

㈥ iar使用makefile编译

要编译出在 iar开发板上运行的可执行文件,需要使用到交叉编译器 iar-linux-gnueabihf-gcc 来编译,在终端中输入如下命令:
iar-linux-gnueabihf-gcc -g -c led.s -o led.o
上述命令就是将 led.s 编译为 led.o,其中“-g”选项是产生调试信息,GDB 能够使用这些
调试信息进行代码调试。“-c”选项是编译源文件,但是不链接。“-o”选项是指定编译产生的文
件名字,这里我们指定 led.s 编译完成以后的文件名字为 led.o。执行上述命令以后就会编译生
成一个 led.o 文件
2 、arm-linux-gnueabihf-ld 链接文件
arm-linux-gnueabihf-ld 用来将众多的.o 文件链接到一个指定的链接位置。我们在学习SMT32 的时候基本就没有听过“链接”这个词,我们一般用 MDK 编写好代码,然后点击“编
译”,MDK 或者 IAR 就会自动帮我们编译好整个工程,最后再点击“下载”就可以将代码下载
到开发板中。这是因为链接这个操作 MDK 或者 IAR 已经帮你做好了,因此我们现在需要做的就是确定一下本试验最终的可执行文件其运行起始地址,也就是链接地址。这里我们要区分“存储地址”和“运行地址”这两个概念,“存储地址”就是可执行文件存储在哪里,可执行文件的存储地址可以随意选择。“运行地址”就是代码运行的时候所处的地址,这个我们在链接的时候就已经确定好了,代码要运行,那就必须处于运行地址处,否则代码肯定运行出错。比如设备支持 SD 卡、EMMC、NAND 启动,因此代码可以存储到 SD 卡、EMMC 或者 NAND 中,但是要运行的话就必须将代码从 SD 卡、EMMC 或者NAND 中拷贝到其运行地址(链接地址)处,“存储地址”和“运行地址”可以一样,比如STM32 的存储起始地址和运行起始地址都是 0X08000000,输入如下命令
arm-linux-gnueabihf-ld -Ttext 0X87800000 led.o -o led.elf
上述命令中-Ttext 就是指定链接地址,“-o”选项指定链接生成的 elf 文件名,这里我们命名
为 led.elf

㈦ 有没有谁在cygwin编译过交叉编译器,用于在windows系统下编译出linux下的elf格式的可执行文件。

用cygwin和用linux基本一样,只是速度下的区别。
不存在如此的交叉编译器。可以使用CYGWIN版本的gcc

阅读全文

与交叉编译生成elf相关的资料

热点内容
猎人宝宝攻击命令 浏览:159
操作系统是编译原理吗 浏览:646
云服务器迁移后 浏览:260
excel格式转换pdf 浏览:987
登录器一般存在哪个文件夹 浏览:535
中兴光猫机器码算法 浏览:330
android响应时间测试 浏览:940
java编程思想第四版答案 浏览:888
如何对nbt编程 浏览:885
mscpdf 浏览:948
文件夹d盘突然0字节可用 浏览:272
吃火腿肠的解压场面 浏览:339
卫星锅加密教程 浏览:792
php7的特性是什么 浏览:469
编译类高级语言源代码运行过程 浏览:177
科普中国app怎么分享 浏览:87
51单片机与32单片机比较 浏览:422
SQL加密存储解密 浏览:507
电气工程师把程序加密 浏览:797
解压切东西动画版 浏览:965