Ⅰ 仿生智能优化算法(如何用英语翻译下)谢谢
Biological modelling intelligence optimization algorithm <dnt> </dnt> each indivial has the experience and the wisdom intelligent body in the biological modelling intelligence optimization algorithm, between the indivial has the interaction mechanism, forms the formidable community wisdom through the interaction to solve the complex problem. The biological modelling intelligence optimization optimization algorithm is one kind of probability searching algorithm essentially, it does not need the question the gradient information, has following is different with the traditional optimization algorithm characteristic:①In the community interaction's indivial is distributional, does not have the direct central main body, not because the indivial indivial will present the breakdown to affect the community to the question solution, will have the strong robustness;②Each indivial can only the sensation partial information, indivial ability or follows the rule to be simple, therefore the community intelligence realizes is simple, is convenient;③The system uses in the expenses which corresponds being few, easy to expand;④From the organization sense, namely the community displays the complex behavior is displays the high intelligence alternately through the simple indivial. Biological modelling intelligence optimization algorithm's these characteristics to overcome difficulties which the optimization design domain faced to provide the powerful support.
<dnt> </dnt>Second, a biological modelling intelligence optimization algorithm common ground analyzes [6] <dnt> the </dnt> several kind of biological modelling intelligence optimization algorithm is simulates the nature living system, total dependence organism own instinct, to optimize its survival condition through unconsciousness optimization behavior to adapt an environment kind of new optimized method, thus has many similar characteristics in the structure and the behavior: 1) is a kind of indefinite algorithm, this kind of uncertainty has manifested the nature physiological mechanism, is follows its randomness to come, when solves certain specific questions must surpass the definite method; 2) is a kind of probability algorithm, its main step includes the random factors, can have more opportunities to gain the globally optimal solution; 3) does not rely on the optimal process the optimized question's strict mathematics nature as well as the objective function and the constraints precise mathematics description; 4) is one kind based on community's intelligent optimization algorithm; 5) has the concealment parallelism, can obtain the great income by the few computations; 6) has appears suddenly the nature, its general objective's completion is in the indivial evolution process appears suddenly in the community; 7) has the evolution, its indivial in complex, stochastic, time-variable environment, through enhances its compatibility unceasingly from the study; 8) has robustness, under the different condition and the environment, manifests the formidable compatibility and the validity. Certainly, because in the nature living system's multiplicity and the complexity, these algorithms also displayed the huge difference. But difference existence, also happen to discuss these biological modelling intelligence optimization algorithm the essential attribute, then obtains the biological modelling intelligence algorithm the unified frame pattern, designed a performance better algorithm to provide the rich material.Second, two biological modelling intelligence optimization algorithm unification frame pattern [7] <dnt> the </dnt> biological modelling intelligence optimization algorithm in aspects and so on structure, research content and method and movement pattern manifested the big similarity, has provided the possibility for the establishment biological modelling intelligence optimization algorithm's unified frame pattern.
<dnt> </dnt> forms the community of the indivial, rests on the specific evolution rule, the iteration proces the renewal community (for example genetic algorithm, ant group algorithm) or the indivial position (for example grain of subgroup algorithm, artificial school of fish algorithm, mix leapfrog algorithm), the optimal solution evolves unceasingly along with the community or the migration appears suddenly, this frame pattern may describe is:
<dnt> </dnt>1) establishes various parameters, proces the initial community and calculates the adaptation value;
<dnt> </dnt>2) acts according to the hypothesis rule, the renewal community or its position, has group of solutions, the computation indivial adaptation value;
<dnt> </dnt>3) obtains the community by the indivial adaptation value comparison the optimal-adaptive value and makes the record;
<dnt> </dnt>4) judges the terminal condition whether to satisfy, if satisfies, conclusion iteration; Otherwise, transfers 2).
<dnt> </dnt> in this frame pattern, the one who decides the algorithm performance is community's renewal rule, these hypothesis rule had decided the indivial behavior standards, have the direct biology foundation, constituted the algorithm to be different with other similar unique essences and the bright characteristic.
<dnt> the </dnt> biological modelling intelligence optimization algorithm sets up together the call-board generally, with records the most superior indivial the historical condition. In algorithm execution each iteration, each indivial comparison own condition and call-board condition, and when own condition is superior with it replacement, causes the call-board to record the historical most superior condition throughout. After algorithm iteration conclusion, may read out the optimal solution from the call-board condition and gain the related information