‘壹’ 从1 到100用简便方法怎么算
解:1+2+3+……+100
=(1+100)×100÷2
=5050
【解析】本题运用到高斯求和公式。
文字表述:和=(首项 + 末项)x项数 /2
数学表达:1+2+3+4+……+ n = n (n+1) /2
【小故事】德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+„+99+100=?
老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:
1+100=2+99=3+98=„=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。
高斯使用的这种求和方法简单快捷,并且广泛地适用于“等差数列”的求和问题。
‘贰’ 连续的数相加有什么简便算法吗
用第一个数加上最后一个数乘以这批数的总个数,然后除以2,
即:(首+尾)*个数/2
求总个数的方法:
1.连续自然数:用最后一个数减第一个数然后加1(尾-首+1)
2.连续偶数:以2开头的,最后一个数除以2即:(尾/2);不以2开头的,先用最后一个数除以2,再用第一个数减2的差除以2,然后把两个结果相减.即:尾/2-(首-2)/2
3.连续奇数:以一开头的,用最后一个数加1然后除以2即:(尾+1)/2;不是以1开头的,先用最后一个数减1的差除以2,然后用第一个数加1的和除以2,接着把两个结果相减.即:(尾+1)/2-(首-1)/2