⑴ 计算机算法的算法与程序
虽然算法与计算机程序密切相关,但二者也存在区别:计算机程序是算法的一个实例,是将算法通过某种计算机语言表达出来的具体形式;同一个算法可以用任何一种计算机语言来表达。
算法列表
图论
路径问题
0/1边权最短路径
BFS
非负边权最短路径(Dijkstra)
可以用Dijkstra解决问题的特征
负边权最短路径
Bellman-Ford
Bellman-Ford的Yen-氏优化
差分约束系统
Floyd
广义路径问题
传递闭包
极小极大距离 / 极大极小距离
Euler Path / Tour
圈套圈算法
混合图的 Euler Path / Tour
Hamilton Path / Tour
特殊图的Hamilton Path / Tour 构造
生成树问题
最小生成树
第k小生成树
最优比率生成树
0/1分数规划
度限制生成树
连通性问题
强大的DFS算法
无向图连通性
割点
割边
二连通分支
有向图连通性
强连通分支
2-SAT
最小点基
有向无环图
拓扑排序
有向无环图与动态规划的关系
二分图匹配问题
一般图问题与二分图问题的转换思路
最大匹配
有向图的最小路径覆盖
0 / 1矩阵的最小覆盖
完备匹配
最优匹配
稳定婚姻
网络流问题
网络流模型的简单特征和与线性规划的关系
最大流最小割定理
最大流问题
有上下界的最大流问题
循环流
最小费用最大流 / 最大费用最大流
弦图的性质和判定
组合数学
解决组合数学问题时常用的思想
逼近
递推/动态规划
概率问题
Polya定理
计算几何 / 解析几何
计算几何的核心:叉积 / 面积
解析几何的主力:复数
基本形
点
直线,线段
多边形
凸多边形 / 凸包
凸包算法的引进,卷包裹法
Graham扫描法
水平序的引进,共线凸包的补丁
完美凸包算法
相关判定
两直线相交
两线段相交
点在任意多边形内的判定
点在凸多边形内的判定
经典问题
最小外接圆
近似O(n)的最小外接圆算法
点集直径
旋转卡壳,对踵点
多边形的三角剖分
数学/数论
最大公约数
Euclid算法
扩展的Euclid算法
同余方程 / 二元一次不定方程
同余方程组
线性方程组
高斯消元法
解mod 2域上的线性方程组
整系数方程组的精确解法
矩阵
行列式的计算
利用矩阵乘法快速计算递推关系
分数
分数树
连分数逼近
数论计算
求N的约数个数
求phi(N)
求约数和
快速数论变换
……
素数问题
概率判素算法
概率因子分解
数据结构
组织结构
二叉堆
左偏树
二项树
胜者树
跳跃表
样式图标
斜堆
reap
统计结构
树状数组
虚二叉树
线段树
矩形面积并
圆形面积并
关系结构
Hash表
并查集
路径压缩思想的应用
STL中的数据结构
vector
deque
set / map
动态规划/记忆化搜索
动态规划和记忆化搜索在思考方式上的区别
最长子序列系列问题
最长不下降子序列
最长公共子序列
一类NP问题的动态规划解法
树型动态规划
背包问题
动态规划的优化
四边形不等式
函数的凸凹性
状态设计
规划方向
线性规划
常用思想
二分
最小表示法
串
KMP
Trie结构
后缀树/后缀数组
LCA/RMQ
有限状态自动机理论
排序
选择/冒泡
快速排序
堆排序
归并排序
基数排序
拓扑排序
排序网络
⑵ 社群里的GDS价值多少
GDS硬币是股票证书(股东业务的缩写)。博兰股份是整个生态系统的估值体现,是平台自己打造的公链。3月27日,GDS硬币向全世界发行,可以交易。据说未来价格可以和比特币媲美,价值无限。但是有人说GDS币是骗局,具体情况需要进一步了解。数字货币etp是交易平台的货币,也叫人民币边界货币,属于去中心化的公链项目。这是一个相对早期的项目。有自己的交易平台,在苦交所上线,项目已经在主网上线。采用的算法是POW算法和DPOS共识机制。该团队也是区块链的早期研究员,也获得了早期投资。
元杰
Metaworld是一个专注于应用开发底层公共链的项目,它还为生态添加了智能财产、数字身份(Avatar)、Oracle等功能。用户可以在元世界上注册和发行数字资产,从而实现区块链上的价值转移。未来将逐步开放项目,尝试为企业用户提供技术和商业支持服务。元链中的数字资产无需信任,可以自由注册、发行、转让、存储、抵押、烧毁。资产的流通非常方便,在金融资产交易领域有着广泛的应用前景。通过头像数字身份的功能,任何人都可以在元域区块链中拥有智能资产。所有有应用价值的信息都将被加密。除非得到头像持有者的授权,否则任何人都无法获取用户的加密信息,非常安全。甲骨文预言机函数在元边界区块链中扮演价值中介的角色。通过托管Oracle,可以保留实物资产,然后在链上发布相应的数字资产,这样实物资产的映射就非常方便了。元杰钱包是一个在线网页钱包,它也可以兼容传统的PC平台。用户可以将元杰的资产存放在元杰钱包中,或者交易和发行专有资产。元项目在资产发行和交易领域布局,独有的预言机功能还可以连接现实世界的资产,大大增强了项目的落地场景。
GDS硬币是股票证书(股东业务的缩写)。博兰股份是整个生态系统的估值体现,是平台自己打造的公链。3月27日,GDS硬币向全世界发行,可以交易。据说未来价格可以和比特币媲美,价值无限。元项目在资产发行和交易领域布局,独有的预言机功能还可以连接现实世界的资产,大大增强了项目的落地场景。信息:世界各国货币介绍如下:1。中国:人民币(?)中华人民共和国的法定货币是人民币,中国人民银行是全国主管人民币管理的机关,负责人民币的设计、印制和发行。人民币的单位是人民币,人民币辅币的单位是角和分,1元等于10角,1角等于10分。带人民币符号的拼音第一个字母的大写y加两个十字表示“?”。2.美国:USD ($) USD(美元的缩写:USD;ISO 4217货币代码:美元;;符号:USA$)是美利坚合众国的法定货币,目前流通的美钞是1929年以来发行的各种版本的钞票。国会是发行美元的主管机关,美联储银行负责具体的发行业务。二战后,欧洲国家和美国达成协议,使用美元进行国际支付。此后,美元在美国以外的国家被广泛用作储备货币,并最终成为国际货币。3.欧盟:欧元()欧元是欧盟19个国家的货币。欧元的19个成员国是德国、法国、意大利、荷兰、比利时、卢森堡、爱尔兰、西班牙、葡萄牙、奥地利、芬兰、立陶宛、拉脱维亚、爱沙尼亚、斯洛伐克、斯洛文尼亚、希腊、马耳他和塞浦路斯?。1999年1月1日,实行欧元的欧盟国家实行统一的货币政策。2002年7月,欧元成为欧元区唯一的法定货币。欧元由欧洲中央银行系统管理,该系统由欧洲中央银行和欧元区国家的中央银行组成。此外,欧元还是6个非欧盟国家(地区)的货币。它们是摩纳哥、圣马力诺、梵蒂冈、安道尔、黑山和科索沃。4.英国:英镑是英国国家货币和货币单位的名称。英镑主要由英格兰银行发行,但也有其他发行者。英镑最常用的符号是什么?。国际标准化组织采用的ISO 4217货币代码是英镑?(大不列颠英镑),除了英国,英国海外领地的货币也是英镑,与英镑的汇率固定在1:1。5.新加坡:新加坡元(S$)新加坡元(缩写为“新加坡元”或“新加坡元”,原名“新加坡元”)是新加坡的法定货币,标记为S$。一美元可以细分为10美分(也叫“毛”)或100美分。新加坡元可分为纸币和硬币。从2004年开始发行2元、5元、10元的塑料钞票。1965年8月9日,新加坡被迫退出马来西亚联邦宣布独立,12月22日成立共和国,但仍使用马来亚和英国妇女。周元。1967年,英镑贬值。原文《马来亚和英国湿婆?国家货币委员会停止发行马来亚和英国希瓦?同年,新加坡开始发行自己的纸币“新加坡元”。到目前为止,已经发行了四套钞票。6.日本:日元(J @)日元(日语:Japanese romaji: en,英语:Yen)其纸币被称为日本的银行券(Bank Notes of Japan)是日本的法定货币,日元常被视为仅次于美元和欧元的储备货币。发行的纸币有四种,即1000、2000、5000和10000日元,还有硬币。日元是日本的货币单位名称,创立于1871年5月1日。1897年日本建立了含金量为0.75g的金本位制,1953年5月宣布含金量为0.00246853g,1988年3月31日金本位制被彻底废除。
GDS硬币是股票证书(股东业务的缩写)。博兰股份是整个生态系统的估值体现,是平台自己打造的公链。3月27日,GDS硬币向全世界发行,可以交易。据说未来价格可以和比特币媲美,价值无限。拓展信息:数字货币etp是交易平台的货币,也称人民币货币,属于去中心化的公链项目。这是一个相对早期的项目。有自己的交易平台,在苦汇上线,项目已经在主网上线。采用的算法是POW算法和DPOS共识机制。该团队也是区块链的早期研究员,也获得了早期投资。Metaworld是一个专注于应用开发底层公共链的项目,它还为生态添加了智能财产、数字身份(Avatar)、Oracle等功能。用户可以在元世界上注册和发行数字资产,从而实现区块链上的价值转移。未来将逐步开放项目,尝试为企业用户提供技术和商业支持服务。元链中的数字资产无需信任,可以自由注册、发行、转让、存储、抵押、烧毁。资产的流通非常方便,在金融资产交易领域有着广泛的应用前景。通过头像数字身份的功能,任何人都可以在元域区块链中拥有智能资产。所有有应用价值的信息都将被加密。除非得到头像持有者的授权,否则任何人都无法获取用户的加密信息,非常安全。甲骨文预言机函数在元边界区块链中扮演价值中介的角色。通过托管Oracle,可以保留实物资产,然后在链上发布相应的数字资产,这样实物资产的映射就非常方便了。元杰钱包是一个在线网页钱包,它也可以兼容传统的PC平台。用户可以将元杰的资产存放在元杰钱包中,或者交易和发行专有资产。元项目在资产发行和交易领域布局,独有的预言机功能还可以连接现实世界的资产,大大增强了项目的落地场景。
⑶ acm竞赛知识点
1. acm常用小知识点
acm常用小知识点 1.ACM 关于ACM程序设计竞赛,需要掌握哪些知识点,最好能详细一
训练过ACM等程序设计竞赛的人在算法上有较大的优势,这就说明当你编程能力提高之后,主要时间是花在思考算法上,不是花在写程序与debug上。
下面给个计划你练练:第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打出来。1.最短路(Floyd、Dijstra,BellmanFord) 2.最小生成树(先写个prim,kruscal要用并查集,不好写) 3.大数(高精度)加减乘除4.二分查找. (代码可在五行以内) 5.叉乘、判线段相交、然后写个凸包. 6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简) 7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式. 8. 调用系统的qsort, 技巧很多,慢慢掌握. 9. 任意进制间的转换第二阶段:练习复杂一点,但也较常用的算法。
如: 1. 二分图匹配(匈牙利),最小路径覆盖 2. 网络流,最小费用流。 3. 线段树. 4. 并查集。
5. 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp 6.博弈类算法。博弈树,二进制法等。
7.最大团,最大独立集。 8.判断点在多边形内。
9. 差分约束系统. 10. 双向广度搜索、A*算法,最小耗散优先.第三阶段: 前两个阶段是打基础,第三阶段是锻炼在比赛中可以快速建立模型、想新算法。这就要平时多做做综合的题型了。
1. 把oibh上的论文看看(大概几百篇的,我只看了一点点,呵呵)。 2. 平时扫扫zoj上的难题啦,别老做那些不用想的题.(中大acm的版主经常说我挑简单的来做:-P ) 3. 多参加网上的比赛,感受一下比赛的气氛,评估自己的实力. 4. 一道题不要过了就算,问一下人,有更好的算法也打一下。
5. 做过的题要记好 :-)下面转自:ACMer必备知识(任重而道远。)
图论 路径问题 0/1边权最短路径 BFS 非负边权最短路径(Dijkstra) 可以用Dijkstra解决问题的特征 负边权最短路径 Bellman-Ford Bellman-Ford的Yen-氏优化 差分约束系统 Floyd 广义路径问题 传递闭包 极小极大距离 / 极大极小距离 Euler Path / Tour 圈套圈算法 混合图的 Euler Path / Tour Hamilton Path / Tour 特殊图的Hamilton Path / Tour 构造 生成树问题 最小生成树 第k小生成树 最优比率生成树 0/1分数规划 度限制生成树 连通性问题 强大的DFS算法 无向图连通性 割点 割边 二连通分支 有向图连通性 强连通分支 2-SAT 最小点基 有向无环图 拓扑排序 有向无环图与动态规划的关系 二分图匹配问题 一般图问题与二分图问题的转换思路 最大匹配 有向图的最小路径覆盖 0 / 1矩阵的最小覆盖 完备匹配 最优匹配 稳定婚姻 网络流问题 网络流模型的简单特征和与线性规划的关系 最大流最小割定理 最大流问题 有上下界的最大流问题 循环流 最小费用最大流 / 最大费用最大流 弦图的性质和判定组合数学 解决组合数学问题时常用的思想 逼近 递推 / 动态规划 概率问题 Polya定理计算几何 / 解析几何 计算几何的核心:叉积 / 面积 解析几何的主力:复数 基本形 点 直线,线段 多边形 凸多边形 / 凸包 凸包算法的引进,卷包裹法 Graham扫描法 水平序的引进,共线凸包的补丁 完美凸包算法 相关判定 两直线相交 两线段相交 点在任意多边形内的判定 点在凸多边形内的判定 经典问题 最小外接圆 近似O(n)的最小外接圆算法 点集直径 旋转卡壳,对踵点 多边形的三角剖分数学 / 数论 最大公约数 Euclid算法 扩展的Euclid算法 同余方程 / 二元一次不定方程 同余方程组 线性方程组 高斯消元法 解mod 2域上的线性方程组 整系数方程组的精确解法 矩阵 行列式的计算 利用矩阵乘法快速计算递推关系 分数 分数树 连分数逼近 数论计算 求N的约数个数 求phi(N) 求约数和 快速数论变换 …… 素数问题 概率判素算法 概率因子分解数据结构 组织结构 二叉堆 左偏树 二项树 胜者树 跳跃表 样式图标 斜堆 reap 统计结构 树状数组 虚二叉树 线段树 矩形面积并 圆形面积并 关系结构 Hash表 并查集 路径压缩思想的应用 STL中的数据结构 vector deque set / map动态规划 / 记忆化搜索 动态规划和记忆化搜索在思考方式上的区别 最长子序列系列问题 最长不下降子序列 最长公共子序列 最长公共不下降子序列 一类NP问题的动态规划解法 树型动态规划 背包问题 动态规划的优化 四边形不等式 函数的凸凹性 状态设计 规划方向线性规划常用思想 二分 最小表示法串 KMP Trie结构 后缀树/后缀数组 LCA/RMQ 有限状态自动机理论排序 选择/冒泡 快速排序 堆排序 归并排序 基数排序 拓扑排序 排序网络。
2.ACM需要具备什么知识
ACM国际大学生程序设计竞赛(ACM/ICPC :ACM International Collegiate Programming Contest)是由国际计算机界历史悠久、颇具权威性的组织ACM( 美国计算机协会)学会(Association for puter Machineary)主办,是世界上公认的规模最大、水平最高的国际大学生程序设计竞赛,其目的旨在使大学生运用计算机来充分展示自已分析问题和解决问题的能力。该项竞赛从1970年举办至今已历25届,因历届竞赛都荟萃了世界各大洲的精英,云集了计算机界的“希望之星”,而受到国际各知名大学的重视,并受到全世界各着名计算机公司如Microsoft(微软公司) 、IBM等的高度关注,成为世界各国大学生最具影响力的国际级计算机类的赛事,ACM所颁发的获奖证书也为世界各着名计算机公司、各知名大学所认可。
该项竞赛是年度性竞赛,分区域预赛和国际决赛两个阶段进行,各预赛区第一名自动获得参加世界决赛的资格,世界决赛安排在每年的3~4月举行,而区域预赛安排在上一年的9月~12月在各大洲举行。从1998年开始,IBM公司连续5年独家赞助该项赛事的世界决赛和区域预赛。这项比赛是以大学为单位组队(每支队由教练、3名正式队员,一名后备队员组成)参赛,要求在5个小时内,解决5~8到题目。
ACM/ICPC的区域预赛是规模很大,范围很广的赛事,近几年,全世界有1000多所大学, 2000多支参赛队在六大洲的28~30个赛站中争夺世界决赛的60~66个名额,去年我校举办的区域预赛,就有来自50多所高校的100多支队伍参加,其激烈程度可想而知。
与其他编程竞赛相比,ACM/ICPC题目难度更大,更强调算法的高效性,不仅要解决一个指定的命题,而且必需要以最佳的方式解决指定的命题;它涉及知识面广,与大学计算机系本科以及研究生如程序设计、离散数学、数据结构、人工智能、算法分析与设计等相关课程直接关联,对数学要求更高,由于采用英文命题,对英语要求高,ACM/ICPC采用3人合作、共用一台电脑,所以它更强调团队协作精神;由于许多题目并无现成的算法,需要具备创新的精神,ACM/ICPC不仅强调学科的基础,更强调全面素质和能力的培养。ACM/ICPC是一种全封闭式的竞赛,能对学生能力进行实时的全面的考察,其成绩的真实性更强,所以目前已成为内地高校的一个热点,是培养全面发展优秀人材的一项重要的活动。概括来说就是:强调算法的高效性、知识面要广、对数学和英语要求较高、团队协作和创新精神。
3.ACM需要那些方面的知识
一、语言是最重要的基本功 无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要 过的第一道关。
亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所 周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的 优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的 操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而 竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出 了更高的要求,是相当不利的。
其实,笔者并不主张大家在这种场合过多地运用面向对 象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会 降低程序的执行效率。 接着说C和C++。
许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没 有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效 率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高 了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。 而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的 可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。
如果有些同 学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间 的。 C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一 接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。
但是 ,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必 须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法; 另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂 度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。 通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分 全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我 举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误 : 在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由 于一个带缓冲一个不带,所以输出一长就混乱了。
只是因为当时judge team中负责F题的 人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出 ),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审 题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地 方的。
现在我们转入第二个方面的讨论,基础学科知识的积累。 二、以数学为主的基础知识十分重要 虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的 思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。
今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的 例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有 一定应用,但是不多。
因此,大一的同学也不必为自己还没学数据结构而感到不知从何 入手提高,把数学捡起来吧!下面我来谈谈在竞赛中应用的数学的主要分支。 1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支, 其重中之重又在于图论和组合数学,尤其是图论。
图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许 多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大 ,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到 力不从心,也不必着急,可以慢慢积累。
竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于 图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些 部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难 题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。
2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解 决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想 上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码 学常识确定大概的过程之后,核心算法往往要涉及数论的内容。
3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知 识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算 、内点外点的判断、凸包等。
4.ACM需要那些方面的知识
一、语言是最重要的基本功 无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要 过的第一道关。
亚洲赛区的比赛支持的语言包括C/C++与JAVA。笔者首先说说JAVA,众所 周知,作为面向对象的王牌语言,JAVA在大型工程的组织与安全性方面有着自己独特的 优势,但是对于信息学比赛的具体场合,JAVA则显得不那么合适,它对于输入输出流的 操作相比于C++要繁杂很多,更为重要的是JAVA程序的运行速度要比C++慢10倍以上,而 竞赛中对于JAVA程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出 了更高的要求,是相当不利的。
其实,笔者并不主张大家在这种场合过多地运用面向对 象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会 降低程序的执行效率。 接着说C和C++。
许多现在参加讲座的同学还在上大一,C的基础知识刚刚学完,还没 有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效 率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高 了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。 而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的 可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。
如果有些同 学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间 的。 C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一 接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。
但是 ,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必 须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法; 另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂 度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。 通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分 全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方,下面我 举个真实的例子来说明这个道理——即使是一点很细微的语言障碍,都有可能酿成错误 : 在去年清华的赛区上,有一个队在做F题的时候使用了cout和printf的混合输出,由 于一个带缓冲一个不带,所以输出一长就混乱了。
只是因为当时judge team中负责F题的 人眼睛尖,看出答案没错只是顺序不对(答案有一页多,是所有题目中最长的一个输出 ),又看了看程序发现只是输出问题就给了个Presentation error(格式错)。如果审 题的人不是这样而是直接给一个 Wrong Answer,相信这个队是很难查到自己错在什么地 方的。
现在我们转入第二个方面的讨论,基础学科知识的积累。 二、以数学为主的基础知识十分重要 虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的 思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。
今年World Final的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的 例子。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有 一定应用,但是不多。
因此,大一的同学也不必为自己还没学数据结构而感到不知从何 入手提高,把数学捡起来吧!下面我来谈谈在竞赛中应用的数学的主要分支。 1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支, 其重中之重又在于图论和组合数学,尤其是图论。
图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许 多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大 ,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到 力不从心,也不必着急,可以慢慢积累。
竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于 图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些 部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难 题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。
2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解 决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想 上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码 学常识确定大概的过程之后,核心算法往往要涉及数论的内容。
3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知 识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算 、内点外点的判断、凸包等。
5.ACM需要具备什么知识
ACM国际大学生程序设计竞赛(ACM/ICPC :ACM International Collegiate Programming Contest)是由国际计算机界历史悠久、颇具权威性的组织ACM( 美国计算机协会)学会(Association for puter Machineary)主办,是世界上公认的规模最大、水平最高的国际大学生程序设计竞赛,其目的旨在使大学生运用计算机来充分展示自已分析问题和解决问题的能力。该项竞赛从1970年举办至今已历25届,因历届竞赛都荟萃了世界各大洲的精英,云集了计算机界的“希望之星”,而受到国际各知名大学的重视,并受到全世界各着名计算机公司如Microsoft(微软公司) 、IBM等的高度关注,成为世界各国大学生最具影响力的国际级计算机类的赛事,ACM所颁发的获奖证书也为世界各着名计算机公司、各知名大学所认可。
该项竞赛是年度性竞赛,分区域预赛和国际决赛两个阶段进行,各预赛区第一名自动获得参加世界决赛的资格,世界决赛安排在每年的3~4月举行,而区域预赛安排在上一年的9月~12月在各大洲举行。从1998年开始,IBM公司连续5年独家赞助该项赛事的世界决赛和区域预赛。这项比赛是以大学为单位组队(每支队由教练、3名正式队员,一名后备队员组成)参赛,要求在5个小时内,解决5~8到题目。
ACM/ICPC的区域预赛是规模很大,范围很广的赛事,近几年,全世界有1000多所大学, 2000多支参赛队在六大洲的28~30个赛站中争夺世界决赛的60~66个名额,去年我校举办的区域预赛,就有来自50多所高校的100多支队伍参加,其激烈程度可想而知。
与其他编程竞赛相比,ACM/ICPC题目难度更大,更强调算法的高效性,不仅要解决一个指定的命题,而且必需要以最佳的方式解决指定的命题;它涉及知识面广,与大学计算机系本科以及研究生如程序设计、离散数学、数据结构、人工智能、算法分析与设计等相关课程直接关联,对数学要求更高,由于采用英文命题,对英语要求高,ACM/ICPC采用3人合作、共用一台电脑,所以它更强调团队协作精神;由于许多题目并无现成的算法,需要具备创新的精神,ACM/ICPC不仅强调学科的基础,更强调全面素质和能力的培养。ACM/ICPC是一种全封闭式的竞赛,能对学生能力进行实时的全面的考察,其成绩的真实性更强,所以目前已成为内地高校的一个热点,是培养全面发展优秀人材的一项重要的活动。概括来说就是:强调算法的高效性、知识面要广、对数学和英语要求较高、团队协作和创新精神。
6.ACM常用的经典算法
大概分为数论算法,图论算法,A*算法。
数论算法:
排序(选择,冒泡,快速,归并,堆,基数,桶排序等)
递归,回溯
概率,随机
公约数,素数
因数分解
矩阵运算
线性规划
最小二乘
微积分
多项式分解和级数
图论算法:
哈夫曼树(即最优二叉树)
哈希表
Prim,Kruskal算法(即最小生成树算法)
红黑树
a-B剪枝法
深、广度搜索
拓扑排序
强连通分量
Dijkstra,Bellman-Ford,Floyd-Warashall算法(最短路径算法)
计算几何(线段相交,凸包,最近点对)
A*算法:
动态规划
贪心算法
KMP算法
哈密顿回路问题
子集问题
博弈(极大极小值算法等)
7.参加ACM需要准备哪些知识
学ACM要熟练C语言的基础语法,对编程有很大的兴趣,还要学关于数据结构的知识。
内容大多数是考数据结构,例如:深度搜索(dfs)、广度搜索(bfs)、并查集、母函数、最小生成树、数论、动态规划(重点)、背包问题、最短路、网络流……还有很多算法,我列出这些是经常考到的,我也在学习上述所说的。 最好买一本《数据结构》或者关于算法的书看看,看完一些要自己动手实践做题,做题的话去杭电acm做题,里面有很多很基础的题,不错的。
资料的话,网络有很多,我多数都是网络或者 *** ,还有可以看看别人的博客的解题报告,里面有详细的介绍,不懂还可以问问同学师兄的。 对了,还有一点,acm比赛都是英文题目的,比赛时带本字典查吧。
希望我说的你能满意,祝你能在acm方面有所收获。