❶ surf算法C语言编写,要做嵌入式开发,不要C++和基于OPENCV的
surf借鉴了sift中简化近似的思想,将DOH中的高斯二阶微分模板进行了近似简化,使得模板对图像的滤波只需要进行几个简单的加减法运算,并且,这种运算与滤波模板的尺寸有关。实验证明surf算法较sift算法在运算速度上要快3倍左右。
1积分图像
surf算法中要用到积分图像的概念。借助积分图像,图像与高斯二阶微分模板的滤波转化为对积分图像的加减运算。积分图像(IntegralImage)的概念是由viola和Jones提出来的,而将类似积分图像用于盒子滤波是由Simard等人提出。
积分图像中任意一点(i,j)的值为ii(i,j)为原图像左上角到任意点(i,j)相应的对角线区域灰度值的总和即:
公式中,I(x`,y`)表示原图像中点(i`,j`)的灰度值,ii(x,y)可以由下面两公式迭代计算得到:
公式中,S(x,y)表示一列的积分,且S(i,-1)=0,ii(-1,j)=0.求积分图像,只需对原图像的所有像素素进行一遍扫描。下面的代码为c++语言的实现
pOutImage[0][0]=pInImage[0][0];
for(intx=1,x<nWidth;i++)
{
pOutImage[x][0]=pInImage[x-1][0]+pInImage[x][0];
}
for(inty=1;y<nHeight;y++)
{
intnSum=0;
for(intx=0;x<nWidth;x++)
{
nSum=pInImage[x][y];
pOutImage[x][y]=pInImage[x][y-1]+nSum;
}
}
如图表示,在求取窗口w内的像元灰度和时,不管窗口W的大小如何,均可利用积分图像的4个对应点(i1,j1)(i2,j2)(i3,j3)(i4,j4)的值计算的到。也就是说,求取窗口W内的像元灰度和与窗口的尺寸是无关的。窗口W内的像元的灰度和为
Sum(W)=ii(i4,j4)-ii(i2,j2)-ii(i3,j3)+ii(i1,j1)
下面看以截图,相信都可以看懂
关于矩形区域内像素点的求和应该是一种简单重复性运算,采用这种思路总体上提高了效率。为什么这么说呢?假设一幅图片共有n个像素点,则计算n个位置的积分图总共的加法运算有n-1次(注意:可不是次哦,要充分利用递推思想),将这些结果保存在一个跟原图对应的矩阵M中。当需要计算图像中某个矩形区域内的所有像素之和是直接像查表一样,调出A,B,C,D四点的积分图值,简单的加减法(注意只需要三次哦)即可得到结果。反之,如果采用naive的方式直接在原图像中的某个矩形区域内求和,你想想,总共可能的矩形组合有多少?!!且对于一幅图像n那是相当大啊,所以2^n
那可是天文数字,而且这里面绝大部分的矩形有重叠,重叠意味着什么?在算求和的时候有重复性的工作,其实我们是可以有效的利用已经计算过的信息的。这就是积分图法的内在思想:它实际上是先计算n个互不重叠(专业点说是不相交)的矩形区域内的像素点求和,充分利用这些值(已有值)计算未知值,有点类似递推的味道...这就完全避免了重复求和运算。
这样就可以进行2种运算:
(1)任意矩形区域内像素积分。由图像的积分图可方便快速地计算图像中任意矩形内所有像素灰度积分。如下图2.3所示,点1的积分图像ii1的值为(其中Sum为求和):
ii1=Sum(A)
同理,点2、点3、点4的积分图像分别为:
ii2=Sum(A)+Sum(B);ii3=Sum(A)+Sum(C);ii4=Sum(A)+Sum(B)+Sum(C)+Sum(D);
矩形区域D内的所有像素灰度积分可由矩形端点的积分图像值得到:
Sum(D)=ii1+ii4-(ii2+ii3)(1)
(2)特征值计算
矩形特征的特征值是两个不同的矩形区域像素和之差,由(1)式可以计算任意矩形特征的特征值,下面以图2.1中特征原型A为例说明特征值的计算。
如图2.4所示,该特征原型的特征值定义为:
Sum(A)-Sum(B)
根据(1)式则有:Sum(A)=ii4+ii1-(ii2+ii3);Sum(B)=ii6+ii3-(ii4+ii5);
所以此类特征原型的特征值为:
(ii4-ii3)-(ii2-ii1)+(ii4-ii3)-(ii6-ii5)
另示:运用积分图可以快速计算给定的矩形之所有象素值之和Sum(r)。假设r=(x,y,w,h),那么此矩形内部所有元素之和等价于下面积分图中下面这个式子:
Sum(r)=ii(x+w,y+h)+ii(x-1,y-1)-ii(x+w,y-1)-ii(x-1,y+h)
由此可见,矩形特征特征值计算只与此特征端点的积分图有关,而与图像坐标值无关。对于同一类型的矩形特征,不管特征的尺度和位置如何,特征值的计算所耗费的时间都是常量,而且都只是简单的加减运算。其它类型的特征值计算方法类似。
❷ OpenCV-python系列六:图像滤波
图像滤波是一种十分常见的图像处理手段。通常,你可以认为相邻位置像素是紧密联系的,它们共同来显示对某个物体,图像滤波则通过运算来排除图像中和周围相差大的像素。当然,这并不是绝对的, 有时候你为了评估图像的质量,也会将这些“特立独行”的像素作为选取的目标 。无论你采用什么方法,记住你要的目标就行,有时候你的目标可能是别人的背景。
滤波常常会使得图像变得模糊(非绝对),那么,为什么你需要将一幅清晰的图像变得模糊呢?下面的例子应该可以解释。
高斯滤波采用满足正态分布的核模板,其参数的主要参数是标准差σ,代表核的离散程度,σ值越小,模板中心系数与边缘系数差越大,平滑的程度越小。
高斯滤波对图像采集过程中由于不良照明/高温引起的传感器噪声信号有较好的效果,消除了图像中的高频信号。
由于得到的是一维的Gaussian Kernel,你可以采用下面的方式转为二维的
为了便于直观感受高斯滤波的效果,使用Canny算子来提取轮廓对比,你可以试试在特征提取前加高斯滤波对比。
补充说明:对于均值滤波,你也可以使用cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]])来实现,需要将normalize设置为True,当设置normalize为False时,实现的是将kernel内像素相加,官方文档做出的描述为:
中值滤波对图像中的脉冲型(椒盐等)噪声信号处理效果好,当 你的应用场景存在这种颗粒感的噪声信号时,中值滤波会是一种很好的选择 。它,选取kernel区域内像素点集的中值最为锚点的像素值,对类似投票机制中的最高分(高灰阶点)和最低分(过低灰阶点)影响有很好的抑制作用。
如果你的应用涉及到图像美化,双边滤波可以初步达到你的期望,关于双边滤波,这里不做展开,由你来探索,其函数参数信息如下。
对于opencv-python的图像滤波部分有问题欢迎留言, Have Fun With OpenCV-Python, 下期见。
❸ 图像处理之双边滤波算法
双边滤波是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折中处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的,具有简单、非迭代、局部处理的特点。之所以能够达到保边去噪的滤波效果是因为滤波器由两个函数构成:
一个函数是像素欧式距离决定滤波器模板的系数,另一个是由像素的灰度差值决定滤波器模板的系数。
其综合了高斯滤波器(Gaussian Filter)和α-截尾均值滤波器(Alpha-Trimmed mean Filter)的特点。高斯滤波器只考虑像素间的欧式距离,其使用的模板系数随着和窗口中心的距离增大而减小;Alpha截尾均值滤波器则只考虑了像素灰度值之间的差值,去掉α%的最小值和最大值后再计算均值。
双边滤波器使用二维高斯函数生成距离模板,使用一维高斯函数生成值域模板。
双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,其公式如下:
其中(k,l)为模板窗口的中心坐标;(i,j)为模板窗口的其他系数的坐标;σd为高斯函数的标准差。 使用该公式生成的滤波器模板和高斯滤波器使用的模板是没有区别的。
值域模板系数的生成公式如下:
其中,函数f(x,y)表示要处理的图像,f(x,y)表示图像在点(x,y)处的像素值;(k,l)为模板窗口的中心坐标;(i,j)为模板窗口的其他系数的坐标;σr为高斯函数的标准差。
将上述两个模板相乘就得到了双边滤波器的模板,其公式如下:
❹ 高斯滤波的算法原理
高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,人们知道数字图像用于后期应用,其噪声是最大的问题,由于误差会累计传递等原因,很多图像处理教材会在很早的时候介绍Gauss滤波器,用于得到信噪比SNR较高的图像(反应真实信号)。与此相关的有Gauss-Laplace变换,其实就是为了得到较好的图像边缘,先对图像做Gauss平滑滤波,剔除噪声,然后求二阶导矢,用二阶导的过零点确定边缘,在计算时也是频域乘积=>空域卷积。
滤波器就是建立的一个数学模型,通过这个模型来将图像数据进行能量转化,能量低的就排除掉,噪声就是属于低能量部分。
若使用理想滤波器,会在图像中产生振铃现象。采用高斯滤波器的话,系统函数是平滑的,避免了振铃现象。