导航:首页 > 源码编译 > 堆排序从小到大排序的算法

堆排序从小到大排序的算法

发布时间:2024-01-03 23:56:45

1. 各种排序算法实现和比较

1、 堆排序定义
n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
注意:
①堆中任一子树亦是堆。
②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
3、堆排序特点
堆排序(HeapSort)是一树形选择排序。
堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(或最小)的记录。
4、堆排序与直接插入排序的区别
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
5、堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
(3)堆排序的算法:
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元
int i;
BuildHeap(R); //将R[1-n]建成初始堆
for(i=n;i1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换
Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函数的实现
因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。
① Heapify函数思想方法
每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。
"筛选法"调整堆
R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。因此,有人将此方法称为"筛选法"。
具体的算法
②BuildHeap的实现
要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。
显然只有一个结点的树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。这样,我们只需依次将以序号为 , -1,…,1的结点作为根的子树都调整为堆即可。
具体算法。
5、大根堆排序实例
对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见。
6、 算法分析
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。
由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
堆排序是就地排序,辅助空间为O(1),
它是不稳定的排序方法。

2. 数据结构与算法--堆和堆排序

堆排序是一种原地的、时间复杂度为 O(nlogn) 的排序算法。

堆是一种特殊的树。
只要满足这两点,它就是一个堆:

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫做 “大顶堆” 。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫做 “小顶堆”

完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。下标可以直接计算出左右字数的下标。(数组中下标为 i 的节点,左子节点下标为 i∗2 ,右子节点下标为 i∗2+1,父节点的下标为 i/2​ 。)

如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫做 堆化(heapify)
堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。
堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是 从上往下的堆化方法

一个包含 n 个节点的完全二叉树,树的高度不会超过 log2​n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。

这里我们借助于堆这种数据结构实现的排序算法,就叫做堆排序。这种排序方法的时间复杂度非常稳定,是 O(nlogn),并且它还是原地排序算法。

从后往前处理数组,并且每个数据都是从上往下堆化。
因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从最后一个非叶子节点开始,依次堆化就行了。

建堆的时间复杂度就是 O(n)。 推导过程见 极客时间--数据结构与算法之美

建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。
这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n−1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n−1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。

整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)。
堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

堆这种数据结构几个非常重要的应用:优先级队列、求 Top K 和求中位数。

假设我们有 100 个小文件,每个文件的大小是 100MB,每个文件中存储的都是有序的字符串。我们希望将这些 100 个小文件合并成一个有序的大文件。这里就会用到优先级队列。
这里就可以用到优先级队列,也可以说是堆。我们将从小文件中取出来的字符串放入到小顶堆中,那堆顶的元素,也就是优先级队列队首的元素,就是最小的字符串。我们将这个字符串放入到大文件中,并将其从堆中删除。然后再从小文件中取出下一个字符串,放入到堆中。循环这个过程,就可以将 100 个小文件中的数据依次放入到大文件中。

我们可以用优先级队列来解决。我们按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。

如何在一个包含 n 个数据的数组中,查找前 K 大数据呢?我们可以维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。

中位数,顾名思义,就是处在中间位置的那个数。
使用两个堆:一个大顶堆, 一个小顶堆。 小顶堆中的数据都大于大顶堆中的数据。
如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;否则,我们就将这个新数据插入到小顶堆。
也就是说,如果有 n 个数据,n 是偶数,我们从小到大排序,那前 2n​ 个数据存储在大顶堆中,后 2n​ 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储 2n​+1 个数据,小顶堆中就存储 2n​ 个数据。

极客时间--数据结构与算法之美--28 | 堆和堆排序:为什么说堆排序没有快速排序快?

3. 100w个数,用最快的方法,求从小到大排序后的前五个数(cc++程序)

我面试的时候有问到过,因为数据量很大,所以要同时考虑空间问题。标准答案是采用堆排序。
求从小到大排序后的前五个数,就是求最小的5个数。

具体做法是:
构建一个只有5个元素的max-heap,那么根结点就是这5个数中最大的数,然后开始遍历数组,如果遇到的数比max-heap的根结点还大,直接跳过,遇到比max-heap根结点小的数,就替代根结点,然后对这个max-heap进行维护(也就是排序,保证heap的特征)。那么遍历完数组后,这个max-heap的5个元素就是最小的5个数。

关于堆排序的代码应该不难找,或者我今天有空的时候写给你~

4. 堆排序过程

1,实用的排序算法:选择排序
(1)选择排序的基本思想是:每一趟(例如第i趟,i=0,1,2,3,……n-2)在后面n-i个待排序元素中选择排序码最小的元素,作为有序元素序列的第i个元素。待到第n-2趟做完,待排序元素只剩下一个,就不用再选了。
(2)三种常用的选择排序方法
1>直接选择排序
2>锦标赛排序
3>堆排序
其中,直接排序的思路和实现都比较简单,并且相比其他排序算法,直接选择排序有一个突出的优势——数据的移动次数少。
(3)直接选择排序简介
1>直接选择排序(select sort)是一种简单的排序方法,它的基本步骤是:
1)在一组元素V[i]~V[n-1]中选择具有最小排序码的元素;
2)若它不是这组元素中的第一个元素,则将它与这组元素中的第一个元素对调;
3)在这组元素中剔除这个具有最小排序码的元素,在剩下的元素V[i+1]~V[n-1]中重复执行1、2步骤,直到剩余元素只有一个为止。
2>直接选择排序使用注意
它对一类重要的元素序列具有较好的效率,这就是元素规模很大,而排序码却比较小的序列。因为对这种序列进行排序,移动操作所花费的时间要比比较操作的时间大的多,而其他算法移动操作的次数都要比直接选择排序来的多,直接选择排序是一种不稳定的 排序方法。
3>直接选择排序C++函数代码

//函数功能,直接选择排序算法对数列排序
//函数参数,数列起点,数列终点
void dselect_sort(const int start, const int end) {
for (int i = start; i < end; ++i) {
int min_position = i;
for (int j = i + 1; j <= end; ++j) { //此循环用来寻找最小关键码
if (numbers[j] < numbers[min_position]) {
min_position = j;
}
}
if (min_position != i) { //避免自己与自己交换
swap(numbers[min_position], numbers[i]);

(4)关于锦标赛排序
直接选择排序中,当n比较大时,排序码的比较次数相当多,这是因为在后一趟比较选择时,往往把前一趟已经做过的比较又重复了一遍,没有把前一趟的比较结果保留下来。
锦标赛排序(tournament sort)克服了这一缺点。它的思想与体育比赛类似,就是把待排序元素两两进行竞赛,选出其中的胜利者,之后胜利者之间继续竞赛,再选出其中的胜利者,然后重复这一过程,最终构造出胜者树,从而实现排序的目的。

2,堆排序的排序过程
(1)个人理解:堆排序是选择排序的一种,所以它也符合选择排序的整体思想。直接选择排序是在还未成序的元素中逐个比较选择,而堆排序是首先建立一个堆(最大堆或最小堆),这使得数列已经“大致”成序,之后只需要局部调整来重建堆即可。建立堆及重建堆这一过程映射到数组中,其实就是一个选择的过程,只不过不是逐个比较选择,而是借助完全二叉树来做到有目的的比较选择。这也是堆排序性能优于直接选择排序的一个体现。
(2)堆排序分为两个步骤:
1>根据初始输入数据,利用堆的调整算法形成初始堆;
2>通过一系列的元素交换和重新调整堆进行排序。
(3)堆排序的排序思路
1>前提,我们是要对n个数据进行递增排序,也就是说拥有最大排序码的元素应该在数组的末端。
2>首先建立一个最大堆,则堆的第一个元素heap[0]具有最大的排序码,将heap[0]与heap[n-1]对调,把具有最大排序码的元素交换到最后,再对前面n-1个元素,使用堆的调整算法siftDown(0,n-2),重新建立最大堆。结果具有次最大排序码的元素又浮到堆顶,即heap[0]的位置,再对调heap[0]与heap[n-2],并调用siftDown(0,n-3),对前n-2个元素重新调整,……如此反复,最后得到一个数列的排序码递增序列。
(4)堆排序的排序过程:
下面给出局部调整成最大堆的函数实现siftDown(),这个函数在前面最小堆实现博文中的实现思路已经给出,只需做微小的调整即可用在这里建立最大堆。

阅读全文

与堆排序从小到大排序的算法相关的资料

热点内容
薯仔app下载了怎么注册 浏览:843
云服务器一般租多大 浏览:469
屏幕录制app怎么样 浏览:686
义乌市联DNS服务器地址 浏览:669
App二级页面怎么做 浏览:956
提高pdf清晰度 浏览:979
服务器网卡mac地址怎么查 浏览:114
裁决之地服务器为什么这么卡 浏览:597
民生app怎么查保险 浏览:467
单片机蓝牙驱动代码 浏览:467
php实现多选后公开 浏览:645
map中的值为数组的怎么编程 浏览:261
加密货币怎么登录 浏览:1002
如何看本机服务器实例名 浏览:388
变频器加密密码 浏览:796
美国银行加密市场 浏览:384
我的世界服务器如何tp玩家 浏览:26
app下载统计怎么找 浏览:264
荔枝app怎么看适合自己的发型 浏览:371
魔兽世界client文件夹 浏览:541