导航:首页 > 源码编译 > hlpp算法

hlpp算法

发布时间:2024-01-07 14:42:08

‘壹’ 网络流的最大流算法

1、augment path,直译为“增广路径”,其思想大致如下:
原有网络为G,设有一辅助图G',其定义为V(G') = V(G),E(G')初始值(也就是容量)与E(G)相同。每次操作时从Source点搜索出一条到Sink点的路径,然后将该路径上所有的容量减去该路径上容量的最小值,然后对路径上每一条边<u,v>添加或扩大反方向的容量,大小就是刚才减去的容量。一直到没有路为止。此时辅助图上的正向流就是最大流。
我们很容易觉得这个算法会陷入死循环,但事实上不是这样的。我们只需要注意到每次网络中由Source到Sink的流都增加了,若容量都是整数,则这个算法必然会结束。
寻找通路的时候可以用DFS,BFS最短路等算法。就这两者来说,BFS要比DFS快得多,但是编码量也会相应上一个数量级。
增广路方法可以解决最大流问题,然而它有一个不可避免的缺陷,就是在极端情况下每次只能将流扩大1(假设容量、流为整数),这样会造成性能上的很大问题,解决这个问题有一个复杂得多的算法,就是预推进算法。
2、push label,直译为“预推进”算法。
3、压入与重标记(Push-Relabel)算法
除了用各种方法在剩余网络中不断找增广路(augmenting)的Ford-Fulkerson系的算法外,还有一种求最大流的算法被称为压入与重标记(Push-Relabel)算法。它的基本操作有:压入,作用于一条边,将边的始点的预流尽可能多的压向终点;重标记,作用于一个点,将它的高度(也就是label)设为所有邻接点的高度的最小值加一。Push-Relabel系的算法普遍要比Ford-Fulkerson系的算法快,但是缺点是相对难以理解。
Relabel-to-Front使用一个链表保存溢出顶点,用Discharge操作不断使溢出顶点不再溢出。Discharge的操作过程是:若找不到可被压入的临边,则重标记,否则对临边压入,直至点不再溢出。算法的主过程是:首先将源点出发的所有边充满,然后将除源和汇外的所有顶点保存在一个链表里,从链表头开始进行Discharge,如果完成后顶点的高度有所增加,则将这个顶点置于链表的头部,对下一个顶点开始Discharge。
Relabel-to-Front算法的时间复杂度是O(V^3),还有一个叫Highest Label Preflow Push的算法复杂度据说是O(V^2*E^0.5)。我研究了一下HLPP,感觉它和Relabel-to-Front本质上没有区别,因为Relabel-to-Front每次前移的都是高度最高的顶点,所以也相当于每次选择最高的标号进行更新。还有一个感觉也会很好实现的算法是使用队列维护溢出顶点,每次对pop出来的顶点discharge,出现了新的溢出顶点时入队。
Push-Relabel类的算法有一个名为gap heuristic的优化,就是当存在一个整数0<k<V,没有任何顶点满足h[v]=k时,对所有h[v]>k的顶点v做更新,若它小于V+1就置为V+1。
cpp程序: #include<cstdio>#include<cstring>#include<algorithm>#include<queue>#;inttt,kase;intnn,m;intH[45],X[1004],P[1004],flow[1004],tot,cap[1005];intd[45];intS,T;voidadd(intx,inty,intz){P[++tot]=y;X[tot]=H[x];H[x]=tot;flow[tot]=z;cap[tot]=flow[tot];}queue<int>q;boolbfs(){memset(d,0,sizeof(d));d[S]=1;intx;q.push(S);while(!q.empty()){x=q.front();q.pop();for(inti=H[x];i;i=X[i]){if(flow[i]>0&&!d[P[i]]){d[P[i]]=d[x]+1;q.push(P[i]);}}}returnd[T];}intdfs(intx,inta){if(x==T||a==0)returna;intf=a,tmp;for(inti=H[x];i;i=X[i]){if(flow[i]>0&&d[P[i]]==d[x]+1){tmp=dfs(P[i],min(flow[i],a));flow[i]-=tmp;a-=tmp;flow[i^1]+=tmp;if(!a)break;}}if(f==a)d[x]=-1;returnf-a;}intDinic(){intf=0;while(bfs())f+=dfs(S,inf);returnf;}intmain(){/**输入过程省略**/intmaxflow=Dinic();printf(%d ,maxflow);return0;}

‘贰’ pascal 网络流是什么啊

网络流是一种模型。由源点、汇点、中间点构成。从原点要流一些东西通过中间节点到汇点。其中每两个点之间有一条边,每条边有一定的容量,流的东西不能超过边的容量。

泛化成现实生活中的一个例子,就是水厂要送一定水到你家,水要经过很多管子,求最多能送多少水到你家。首先从水厂为你家流出的水一定等于流到你家的水(不然水会无故消失吗?)。其次每根管道流的水不能超过管子的容量(不然就爆了)。这就涉及到一个求最大流的问题。一般算法为EK,2F,sap,Dinic,各种预留推进……

因此网络流是一个在生活中很有用的东西,不过NOIP不会考。

附网络流图:

阅读全文

与hlpp算法相关的资料

热点内容
薯仔app下载了怎么注册 浏览:843
云服务器一般租多大 浏览:469
屏幕录制app怎么样 浏览:686
义乌市联DNS服务器地址 浏览:669
App二级页面怎么做 浏览:956
提高pdf清晰度 浏览:979
服务器网卡mac地址怎么查 浏览:114
裁决之地服务器为什么这么卡 浏览:597
民生app怎么查保险 浏览:467
单片机蓝牙驱动代码 浏览:467
php实现多选后公开 浏览:645
map中的值为数组的怎么编程 浏览:261
加密货币怎么登录 浏览:1002
如何看本机服务器实例名 浏览:388
变频器加密密码 浏览:796
美国银行加密市场 浏览:384
我的世界服务器如何tp玩家 浏览:26
app下载统计怎么找 浏览:264
荔枝app怎么看适合自己的发型 浏览:371
魔兽世界client文件夹 浏览:541