导航:首页 > 源码编译 > des算法

des算法

发布时间:2022-01-14 21:41:42

Ⅰ des算法的主要流程

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,整个算法的主流程图如下: 其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:
58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。
经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置换的逆运算。例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41,9,49,17,57,25, 32,1,2,3,4,5,4,5,6,7,8,9,8,9,10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32,1, 16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,
2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25, 在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把48bit数据变为32bit数据。下面给出选择函数Si(i=1,2......8)的功能表:
选择函数Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。
现设输入为:D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法 1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。

Ⅱ 求教des算法的详细过程

des算法的详细过程:
1-1、变换密钥
取得64位的密钥,每个第8位作为奇偶校验位。
1-2、变换密钥。
1-2-1、舍弃64位密钥中的奇偶校验位,根据下表(PC-1)进行密钥变换得到56位的密钥,在变换中,奇偶校验位以被舍弃。
Permuted Choice 1 (PC-1)
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
1-2-2、将变换后的密钥分为两个部分,开始的28位称为C[0],最后的28位称为D[0]。
1-2-3、生成16个子密钥,初始I=1。
1-2-3-1、同时将C[I]、D[I]左移1位或2位,根据I值决定左移的位数。见下表
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
1-2-3-2、将C[I]D[I]作为一个整体按下表(PC-2)变换,得到48位的K[I]
Permuted Choice 2 (PC-2)
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
1-2-3-3、从1-2-3-1处循环执行,直到K[16]被计算完成。
2、处理64位的数据
2-1、取得64位的数据,如果数据长度不足64位,应该将其扩展为64位(例如补零)
2-2、将64位数据按下表变换(IP)
Initial Permutation (IP)
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
2-3、将变换后的数据分为两部分,开始的32位称为L[0],最后的32位称为R[0]。
2-4、用16个子密钥加密数据,初始I=1。
2-4-1、将32位的R[I-1]按下表(E)扩展为48位的E[I-1]
Expansion (E)
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
2-4-2、异或E[I-1]和K[I],即E[I-1] XOR K[I]
2-4-3、将异或后的结果分为8个6位长的部分,第1位到第6位称为B[1],第7位到第12位称为B[2],依此类推,第43位到第48位称为B[8]。
2-4-4、按S表变换所有的B[J],初始J=1。所有在S表的值都被当作4位长度处理。
2-4-4-1、将B[J]的第1位和第6位组合为一个2位长度的变量M,M作为在S[J]中的行号。
2-4-4-2、将B[J]的第2位到第5位组合,作为一个4位长度的变量N,N作为在S[J]中的列号。
2-4-4-3、用S[J][M][N]来取代B[J]。
Substitution Box 1 (S[1])
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S[2]
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S[3]
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S[4]
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
S[5]
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S[6]
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S[7]
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S[8]
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
2-4-4-4、从2-4-4-1处循环执行,直到B[8]被替代完成。
2-4-4-5、将B[1]到B[8]组合,按下表(P)变换,得到P。
Permutation P
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
2-4-6、异或P和L[I-1]结果放在R[I],即R[I]=P XOR L[I-1]。
2-4-7、L[I]=R[I-1]
2-4-8、从2-4-1处开始循环执行,直到K[16]被变换完成。
2-4-5、组合变换后的R[16]L[16](注意:R作为开始的32位),按下表(IP-1)变换得到最后的结果。
Final Permutation (IP**-1)
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
以上就是DES算法的描述。

Ⅲ des算法安全性分析

DES
是一个对称算法:加密和解密用的是同
一算法(除密钥编排不同以外),既可用于加密又可用于解密。它的核心技术是:在相信复杂函数可以通过简单函数迭代若干圈得到的原则下,利用F函数及对合等运算,充分利用非线性运算。

至今,最有效的破解DES算法的方法是穷举搜索法,那么56位长的密钥总共要测试256次,如果每100毫秒可以测试1次,那么需要7.2×1015秒,大约是228,493,000年。但是,仍有学者认为在可预见的将来用穷举法寻找正确密钥已趋于可行,所以若要安全保护10年以上的数据最好。

Ⅳ 如何正确解密DES算法

DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:

DES算法加密过程
对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换后,得到的比特串的下标列表如下:

IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串f1,f1与L0做不进位的二进制加法运算。运算规则为:

f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2…… 一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。

R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1后所得比特串的下标列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

经过置换IP-1后生成的比特串就是密文e.。
下面再讲一下变换f(Ri-1,Ki)。
它的功能是将32比特的输入再转化为32比特的输出。其过程如图所示:

对f变换说明如下:输入Ri-1(32比特)经过变换E后,膨胀为48比特。膨胀后的比特串的下标列表如下:

E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31

膨胀后的比特串分为8组,每组6比特。各组经过各自的S盒后,又变为4比特(具体过程见后),合并后又成为32比特。该32比特经过P变换后,其下标列表如下:

P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

经过P变换后输出的比特串才是32比特的f (Ri-1,Ki)。
下面再讲一下S盒的变换过程。任取一S盒。见图:

Ⅳ des算法是一种什么类型算法

数据加密算法DES
数据加密算法(Data Encryption Algorithm,DEA)的数据加密标准(Data Encryption Standard,DES)是规范的描述,它出自 IBM 的研究工作,并在 1997 年被美国政府正式采纳。它很可能是使用最广泛的秘钥系统,特别是在保护金融数据的安全中,最初开发的 DES 是嵌入硬 件中的。通常,自动取款机(Automated Teller Machine,ATM)都使用 DES。
DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环。
攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用 56 位的密钥,则可能的密钥数量是 2 的 56 次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过 ,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(Advanced Encryption Standard,AES)。
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
IBM 曾对 DES 拥有几年的专利权,但是在 1983 年已到期,并且处于公有范围中,允许在特定条件下可以免除专利使用费而使用。

Ⅵ des加密算法(c/c++)

des.h文件:

#ifndefCRYPTOPP_DES_H

#defineCRYPTOPP_DES_H

#include"cryptlib.h"

#include"misc.h"

NAMESPACE_BEGIN(CryptoPP)

classDES:publicBlockTransformation

{

public:

DES(constbyte*userKey,CipherDir);

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const

{DES::ProcessBlock(inoutBlock,inoutBlock);}

enum{KEYLENGTH=8,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

protected:

staticconstword32Spbox[8][64];

SecBlock<word32>k;

};

classDESEncryption:publicDES

{

public:

DESEncryption(constbyte*userKey)

:DES(userKey,ENCRYPTION){}

};

classDESDecryption:publicDES

{

public:

DESDecryption(constbyte*userKey)

:DES(userKey,DECRYPTION){}

};

classDES_EDE_Encryption:publicBlockTransformation

{

public:

DES_EDE_Encryption(constbyte*userKey)

:e(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=16,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESe,d;

};

classDES_EDE_Decryption:publicBlockTransformation

{

public:

DES_EDE_Decryption(constbyte*userKey)

:d(userKey,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=16,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESd,e;

};

classTripleDES_Encryption:publicBlockTransformation

{

public:

TripleDES_Encryption(constbyte*userKey)

:e1(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION),

e2(userKey+2*DES::KEYLENGTH,ENCRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=24,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESe1,d,e2;

};

classTripleDES_Decryption:publicBlockTransformation

{

public:

TripleDES_Decryption(constbyte*userKey)

:d1(userKey+2*DES::KEYLENGTH,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION),

d2(userKey,DECRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=24,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESd1,e,d2;

};

NAMESPACE_END

#endif

des.cpp文件:

//des.cpp-modifiedbyWeiDaifrom:

/*

*

*circa1987,'s1977

*publicdomaincode.,but

*theactualencrypt/

*Outerbridge'sDEScodeasprintedinSchneier's"AppliedCryptography."

*

*Thiscodeisinthepublicdomain.Iwouldappreciatebugreportsand

*enhancements.

*

*PhilKarnKA9Q,[email protected],August1994.

*/

#include"pch.h"

#include"misc.h"

#include"des.h"

NAMESPACE_BEGIN(CryptoPP)

/*

*Threeofthesetables,theinitialpermutation,thefinal

*,areregularenoughthat

*forspeed,wehard-codethem.They'rehereforreferenceonly.

*Also,,gensp.c,

*tobuildthecombinedSPbox,Spbox[].They'realsoherejust

*forreference.

*/

#ifdefnotdef

/*initialpermutationIP*/

staticbyteip[]={

58,50,42,34,26,18,10,2,

60,52,44,36,28,20,12,4,

62,54,46,38,30,22,14,6,

64,56,48,40,32,24,16,8,

57,49,41,33,25,17,9,1,

59,51,43,35,27,19,11,3,

61,53,45,37,29,21,13,5,

63,55,47,39,31,23,15,7

};

/*finalpermutationIP^-1*/

staticbytefp[]={

40,8,48,16,56,24,64,32,

39,7,47,15,55,23,63,31,

38,6,46,14,54,22,62,30,

37,5,45,13,53,21,61,29,

36,4,44,12,52,20,60,28,

35,3,43,11,51,19,59,27,

34,2,42,10,50,18,58,26,

33,1,41,9,49,17,57,25

};

/*expansionoperationmatrix*/

staticbyteei[]={

32,1,2,3,4,5,

4,5,6,7,8,9,

8,9,10,11,12,13,

12,13,14,15,16,17,

16,17,18,19,20,21,

20,21,22,23,24,25,

24,25,26,27,28,29,

28,29,30,31,32,1

};

/*The(in)famousS-boxes*/

staticbytesbox[8][64]={

/*S1*/

14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,

0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,

4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,

15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

/*S2*/

15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,

3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,

0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,

13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

/*S3*/

10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,

13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,

13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,

1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

/*S4*/

7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,

13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,

10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,

3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

/*S5*/

2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,

14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,

4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,

11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

/*S6*/

12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,

10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,

9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,

4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

/*S7*/

4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,

13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,

1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,

6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

/*S8*/

13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,

1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,

7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,

2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11

};

/*32--boxes*/

staticbytep32i[]={

16,7,20,21,

29,12,28,17,

1,15,23,26,

5,18,31,10,

2,8,24,14,

32,27,3,9,

19,13,30,6,

22,11,4,25

};

#endif

/*permutedchoicetable(key)*/

staticconstbytepc1[]={

57,49,41,33,25,17,9,

1,58,50,42,34,26,18,

10,2,59,51,43,35,27,

19,11,3,60,52,44,36,

63,55,47,39,31,23,15,

7,62,54,46,38,30,22,

14,6,61,53,45,37,29,

21,13,5,28,20,12,4

};

/*numberleftrotationsofpc1*/

staticconstbytetotrot[]={

1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28

};

/*permutedchoicekey(table)*/

staticconstbytepc2[]={

14,17,11,24,1,5,

3,28,15,6,21,10,

23,19,12,4,26,8,

16,7,27,20,13,2,

41,52,31,37,47,55,

30,40,51,45,33,48,

44,49,39,56,34,53,

46,42,50,36,29,32

};

/*EndofDES-definedtables*/

/*bit0isleft-mostinbyte*/

staticconstintbytebit[]={

0200,0100,040,020,010,04,02,01

};

/*Setkey(initializekeyschelearray)*/

DES::DES(constbyte*key,CipherDirdir)

:k(32)

{

SecByteBlockbuffer(56+56+8);

byte*constpc1m=buffer;/*placetomodifypc1into*/

byte*constpcr=pc1m+56;/*placetorotatepc1into*/

byte*constks=pcr+56;

registerinti,j,l;

intm;

for(j=0;j<56;j++){/*convertpc1tobitsofkey*/

l=pc1[j]-1;/*integerbitlocation*/

m=l&07;/*findbit*/

pc1m[j]=(key[l>>3]&/*findwhichkeybytelisin*/

bytebit[m])/*andwhichbitofthatbyte*/

?1:0;/*andstore1-bitresult*/

}

for(i=0;i<16;i++){/*keychunkforeachiteration*/

memset(ks,0,8);/*Clearkeyschele*/

for(j=0;j<56;j++)/*rotatepc1therightamount*/

pcr[j]=pc1m[(l=j+totrot[i])<(j<28?28:56)?l:l-28];

/**/

for(j=0;j<48;j++){/*selectbitsindivially*/

/*checkbitthatgoestoks[j]*/

if(pcr[pc2[j]-1]){

/*maskitinifit'sthere*/

l=j%6;

ks[j/6]|=bytebit[l]>>2;

}

}

/*Nowconverttoodd/eveninterleavedformforuseinF*/

k[2*i]=((word32)ks[0]<<24)

|((word32)ks[2]<<16)

|((word32)ks[4]<<8)

|((word32)ks[6]);

k[2*i+1]=((word32)ks[1]<<24)

|((word32)ks[3]<<16)

|((word32)ks[5]<<8)

|((word32)ks[7]);

}

if(dir==DECRYPTION)//reversekeyscheleorder

for(i=0;i<16;i+=2)

{

std::swap(k[i],k[32-2-i]);

std::swap(k[i+1],k[32-1-i]);

}

}

/**/

/*Ccodeonlyinportableversion*/

//RichardOuterbridge'sinitialpermutationalgorithm

/*

inlinevoidIPERM(word32&left,word32&right)

{

word32work;

work=((left>>4)^right)&0x0f0f0f0f;

right^=work;

left^=work<<4;

work=((left>>16)^right)&0xffff;

right^=work;

left^=work<<16;

work=((right>>2)^left)&0x33333333;

left^=work;

right^=(work<<2);

work=((right>>8)^left)&0xff00ff;

left^=work;

right^=(work<<8);

right=rotl(right,1);

work=(left^right)&0xaaaaaaaa;

left^=work;

right^=work;

left=rotl(left,1);

}

inlinevoidFPERM(word32&left,word32&right)

{

word32work;

right=rotr(right,1);

work=(left^right)&0xaaaaaaaa;

left^=work;

right^=work;

left=rotr(left,1);

work=((left>>8)^right)&0xff00ff;

right^=work;

left^=work<<8;

work=((left>>2)^right)&0x33333333;

right^=work;

left^=work<<2;

work=((right>>16)^left)&0xffff;

left^=work;

right^=work<<16;

work=((right>>4)^left)&0x0f0f0f0f;

left^=work;

right^=work<<4;

}

*/

//WeiDai''sinitialpermutation

//algorithm,

//(likeinMSVC)

inlinevoidIPERM(word32&left,word32&right)

{

word32work;

right=rotl(right,4U);

work=(left^right)&0xf0f0f0f0;

left^=work;

right=rotr(right^work,20U);

work=(left^right)&0xffff0000;

left^=work;

right=rotr(right^work,18U);

work=(left^right)&0x33333333;

left^=work;

right=rotr(right^work,6U);

work=(left^right)&0x00ff00ff;

left^=work;

right=rotl(right^work,9U);

work=(left^right)&0xaaaaaaaa;

left=rotl(left^work,1U);

right^=work;

}

inlinevoidFPERM(word32&left,word32&right)

{

word32work;

right=rotr(right,1U);

work=(left^right)&0xaaaaaaaa;

right^=work;

left=rotr(left^work,9U);

work=(left^right)&0x00ff00ff;

right^=work;

left=rotl(left^work,6U);

work=(left^right)&0x33333333;

right^=work;

left=rotl(left^work,18U);

work=(left^right)&0xffff0000;

right^=work;

left=rotl(left^work,20U);

work=(left^right)&0xf0f0f0f0;

right^=work;

left=rotr(left^work,4U);

}

//

voidDES::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

word32l,r,work;

#ifdefIS_LITTLE_ENDIAN

l=byteReverse(*(word32*)inBlock);

r=byteReverse(*(word32*)(inBlock+4));

#else

l=*(word32*)inBlock;

r=*(word32*)(inBlock+4);

#endif

IPERM(l,r);

constword32*kptr=k;

for(unsignedi=0;i<8;i++)

{

work=rotr(r,4U)^kptr[4*i+0];

l^=Spbox[6][(work)&0x3f]

^Spbox[4][(work>>8)&0x3f]

^Spbox[2][(work>>16)&0x3f]

^Spbox[0][(work>>24)&0x3f];

work=r^kptr[4*i+1];

l^=Spbox[7][(work)&0x3f]

^Spbox[5][(work>>8)&0x3f]

^Spbox[3][(work>>16)&0x3f]

^Spbox[1][(work>>24)&0x3f];

work=rotr(l,4U)^kptr[4*i+2];

r^=Spbox[6][(work)&0x3f]

^Spbox[4][(work>>8)&0x3f]

^Spbox[2][(work>>16)&0x3f]

^Spbox[0][(work>>24)&0x3f];

work=l^kptr[4*i+3];

r^=Spbox[7][(work)&0x3f]

^Spbox[5][(work>>8)&0x3f]

^Spbox[3][(work>>16)&0x3f]

^Spbox[1][(work>>24)&0x3f];

}

FPERM(l,r);

#ifdefIS_LITTLE_ENDIAN

*(word32*)outBlock=byteReverse(r);

*(word32*)(outBlock+4)=byteReverse(l);

#else

*(word32*)outBlock=r;

*(word32*)(outBlock+4)=l;

#endif

}

voidDES_EDE_Encryption::ProcessBlock(byte*inoutBlock)const

{

e.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

}

voidDES_EDE_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

e.ProcessBlock(inBlock,outBlock);

d.ProcessBlock(outBlock);

e.ProcessBlock(outBlock);

}

voidDES_EDE_Decryption::ProcessBlock(byte*inoutBlock)const

{

d.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

}

voidDES_EDE_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

d.ProcessBlock(inBlock,outBlock);

e.ProcessBlock(outBlock);

d.ProcessBlock(outBlock);

}

voidTripleDES_Encryption::ProcessBlock(byte*inoutBlock)const

{

e1.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

e2.ProcessBlock(inoutBlock);

}

voidTripleDES_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

e1.ProcessBlock(inBlock,outBlock);

d.ProcessBlock(outBlock);

e2.ProcessBlock(outBlock);

}

voidTripleDES_Decryption::ProcessBlock(byte*inoutBlock)const

{

d1.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

d2.ProcessBlock(inoutBlock);

}

voidTripleDES_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

d1.ProcessBlock(inBlock,outBlock);

e.ProcessBlock(outBlock);

d2.ProcessBlock(outBlock);

}

NAMESPACE_END

程序运行如下:

Ⅶ DES算法是属于对称加密算法吗

是的,
最着名的保密密钥或对称密钥加密算法DES(Data Encryption Standard)是由IBM公司在70年代发展起来的,并经过政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(American National Standard Institute, ANSI) 承认。

DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的“每轮”密钥值由56位的完整密钥得出来。DES用软件进行解码需要用很长时间,而用硬件解码速度非常快,但幸运的是当时大多数黑客并没有足够的设备制造出这种硬件设备。在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。所以,当时DES被认为是一种十分强壮的加密方法。

但是,当今的计算机速度越来越快了,制造一台这样特殊的机器的花费已经降到了十万美元左右,所以用它来保护十亿美元的银行间线缆时,就会仔细考虑了。另一个方面,如果只用它来保护一台服务器,那么DES确实是一种好的办法,因为黑客绝不会仅仅为入侵一个服务器而花那么多的钱破解DES密文。由于现在已经能用二十万美圆制造一台破译DES的特殊的计算机,所以现在再对要求“强壮”加密的场合已经不再适用了。

三重DES
因为确定一种新的加密法是否真的安全是极为困难的,而且DES的唯一密码学缺点,就是密钥长度相对比较短,所以人们并没有放弃使用DES,而是想出了一个解决其长度问题的方法,即采用三重DES。这种方法用两个密钥对明文进行三次加密,假设两个密钥是K1和K2,其算法的步骤如图5.9所示:

1. 用密钥K1进行DEA加密。

2. 用K2对步骤1的结果进行DES解密。

3. 用步骤2的结果使用密钥K1进行DES加密。

这种方法的缺点,是要花费原来三倍时间,从另一方面来看,三重DES的112位密钥长度是很“强壮”的加密方式了

Ⅷ 什么是DES算法,什么是3DES算法

这是密码学中的两种加密算法,只要学过密码学究很清楚了
要想搞清楚推荐一本书清华大学出版的《现代密码学》

你可以先看这了解一下
http://ke..com/view/584868.htm?fr=ala0_1
http://..com/question/4573004.html

阅读全文

与des算法相关的资料

热点内容
工作三年的大专程序员 浏览:728
java毕业设计文献 浏览:143
筹码集中度指标源码 浏览:482
listsortjava 浏览:186
plc闪光电路编程实例 浏览:299
socket编程试题 浏览:206
华为的服务器怎么设置从光驱启动 浏览:871
程序员真的累吗 浏览:328
学信网app为什么刷脸不了 浏览:874
天蝎vs程序员 浏览:996
单片机下载口叫什么 浏览:190
程序员的道 浏览:926
云服务器不实名违法吗 浏览:558
怎样查看文件夹图片是否重复 浏览:995
文件怎么导成pdf文件 浏览:808
打开sql表的命令 浏览:103
安卓手机如何面部支付 浏览:38
天元数学app为什么登录不上去 浏览:825
明日之后为什么有些服务器是四个字 浏览:104
安卓系统l1是什么意思 浏览:26