① 计算图像相似度的算法有哪些
SIM = Structural SIMilarity(结构相似性),这是一种用来评测图像质量的一种方法。由于人类视觉很容易从图像中抽取出结构信息,因此计算两幅图像结构信息的相似性就可以用来作为一种检测图像质量的好坏.
首先结构信息不应该受到照明的影响,因此在计算结构信息时需要去掉亮度信息,即需要减掉图像的均值;其次结构信息不应该受到图像对比度的影响,因此计算结构信息时需要归一化图像的方差;最后我们就可以对图像求取结构信息了,通常我们可以简单地计算一下这两幅处理后的图像的相关系数.
然而图像质量的好坏也受到亮度信息和对比度信息的制约,因此在计算图像质量好坏时,在考虑结构信息的同时也需要考虑这两者的影响.通常使用的计算方法如下,其中C1,C2,C3用来增加计算结果的稳定性:
2u(x)u(y) + C1
L(X,Y) = ------------------------ ,u(x), u(y)为图像的均值
u(x)^2 + u(y)^2 + C1
2d(x)d(y) + C2
C(X,Y) = ------------------------,d(x),d(y)为图像的方差
d(x)^2 + d(y)^2 + C2
d(x,y) + C3
S(X,Y) = ----------------------,d(x,y)为图像x,y的协方差
d(x)d(y) + C3
而图像质量Q = [L(X,Y)^a] x [C(X,Y)^b] x [S(X,Y)^c],其中a,b,c分别用来控制三个要素的重要性,为了计算方便可以均选择为1,C1,C2,C3为比较小的数值,通常C1=(K1 x L)^2, C2=(K2 xL)^2, C3 = C2/2, K1 << 1, K2 << 1, L为像素的最大值(通常为255).
希望对你能有所帮助。
② 搜索引擎如何判断网页文章的重复度
搜索引擎分词的方法:
1)正向最大匹配法(由左到右的方向);
2)逆向最大匹配法(由右到左的方向);
3)最少切分(使每一句中切出的词数最小);
利用分词方法,把文章中的词切出来,然后对比,就可以分析出重复度,举个例子:
逆向最大匹配法
我在小明家吃饭
用逆向最大匹配法来切词,切的结果为:饭 吃饭 家吃饭 明家吃饭 小明家吃饭 在小明家吃饭 我在小明家吃饭
词切出来后,拿这个词去对照,很容易计算出重复度
其他方法可以以此类推,一般都是方法结合使用的。
③ 如何使用opencv中的NCC算法实现两幅图像的相似性判断
感知哈希算法(perceptual hash algorithm),它的作用是对每张图像生成一个“指纹”(fingerprint)字符串,然后比较不同图像的指纹。结果越接近,就说明图像越相似。
实现步骤:
1. 缩小尺寸:将图像缩小到8*8的尺寸,总共64个像素。这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异;
2. 简化色彩:将缩小后的图像,转为64级灰度,即所有像素点总共只有64种颜色;
3. 计算平均值:计算所有64个像素的灰度平均值;
4. 比较像素的灰度:将每个像素的灰度,与平均值进行比较,大于或等于平均值记为1,小于平均值记为0;
5. 计算哈希值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图像的指纹。组合的次序并不重要,只要保证所有图像都采用同样次序就行了;
6. 得到指纹以后,就可以对比不同的图像,看看64位中有多少位是不一样的。在理论上,这等同于”汉明距离”(Hamming distance,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数)。如果不相同的数据位数不超过5,就说明两张图像很相似;如果大于10,就说明这是两张不同的图像。
以上内容摘自:http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html
下面是用OpenCV实现的测试代码:
[cpp] view plainprint?
string strSrcImageName = "src.jpg";
cv::Mat matSrc, matSrc1, matSrc2;
matSrc = cv::imread(strSrcImageName, CV_LOAD_IMAGE_COLOR);
CV_Assert(matSrc.channels() == 3);
cv::resize(matSrc, matSrc1, cv::Size(357, 419), 0, 0, cv::INTER_NEAREST);
//cv::flip(matSrc1, matSrc1, 1);
cv::resize(matSrc, matSrc2, cv::Size(2177, 3233), 0, 0, cv::INTER_LANCZOS4);
cv::Mat matDst1, matDst2;
cv::resize(matSrc1, matDst1, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::resize(matSrc2, matDst2, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::cvtColor(matDst1, matDst1, CV_BGR2GRAY);
cv::cvtColor(matDst2, matDst2, CV_BGR2GRAY);
int iAvg1 = 0, iAvg2 = 0;
int arr1[64], arr2[64];
for (int i = 0; i < 8; i++) {
uchar* data1 = matDst1.ptr<uchar>(i);
uchar* data2 = matDst2.ptr<uchar>(i);
int tmp = i * 8;
for (int j = 0; j < 8; j++) {
int tmp1 = tmp + j;
arr1[tmp1] = data1[j] / 4 * 4;
arr2[tmp1] = data2[j] / 4 * 4;
iAvg1 += arr1[tmp1];
iAvg2 += arr2[tmp1];
}
}
iAvg1 /= 64;
iAvg2 /= 64;
for (int i = 0; i < 64; i++) {
arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
}
int iDiffNum = 0;
for (int i = 0; i < 64; i++)
if (arr1[i] != arr2[i])
++iDiffNum;
cout<<"iDiffNum = "<<iDiffNum<<endl;
if (iDiffNum <= 5)
cout<<"two images are very similar!"<<endl;
else if (iDiffNum > 10)
cout<<"they are two different images!"<<endl;
else
cout<<"two image are somewhat similar!"<<endl;
string strSrcImageName = "src.jpg";
cv::Mat matSrc, matSrc1, matSrc2;
matSrc = cv::imread(strSrcImageName, CV_LOAD_IMAGE_COLOR);
CV_Assert(matSrc.channels() == 3);
cv::resize(matSrc, matSrc1, cv::Size(357, 419), 0, 0, cv::INTER_NEAREST);
//cv::flip(matSrc1, matSrc1, 1);
cv::resize(matSrc, matSrc2, cv::Size(2177, 3233), 0, 0, cv::INTER_LANCZOS4);
cv::Mat matDst1, matDst2;
cv::resize(matSrc1, matDst1, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::resize(matSrc2, matDst2, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::cvtColor(matDst1, matDst1, CV_BGR2GRAY);
cv::cvtColor(matDst2, matDst2, CV_BGR2GRAY);
int iAvg1 = 0, iAvg2 = 0;
int arr1[64], arr2[64];
for (int i = 0; i < 8; i++) {
uchar* data1 = matDst1.ptr<uchar>(i);
uchar* data2 = matDst2.ptr<uchar>(i);
int tmp = i * 8;
for (int j = 0; j < 8; j++) {
int tmp1 = tmp + j;
arr1[tmp1] = data1[j] / 4 * 4;
arr2[tmp1] = data2[j] / 4 * 4;
iAvg1 += arr1[tmp1];
iAvg2 += arr2[tmp1];
}
}
iAvg1 /= 64;
iAvg2 /= 64;
for (int i = 0; i < 64; i++) {
arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
}
int iDiffNum = 0;
for (int i = 0; i < 64; i++)
if (arr1[i] != arr2[i])
++iDiffNum;
cout<<"iDiffNum = "<<iDiffNum<<endl;
if (iDiffNum <= 5)
cout<<"two images are very similar!"<<endl;
else if (iDiffNum > 10)
cout<<"they are two different images!"<<endl;
else
cout<<"two image are somewhat similar!"<<endl;
④ 终于知道怎么判断字符串相似度了
一直不理解,为什么要计算两个字符串的相似度呢。什么叫做两个字符串的相似度。经常看别人的博客,碰到比较牛的人,然后就翻了翻,终于找到了比较全面的答案和为什么要计算字符串相似度的解释。因为搜索引擎要把通过爬虫抓取的页面给记录下来,那么除了通过记录url是否被访问过之外,还可以这样,比较两个页面的相似度,因为不同的url中可能记录着相同的内容,这样,就不必再次记录到搜索引擎的存储空间中去了。还有,大家毕业的时候都写过论文吧,我们论文的查重系统相信也会采用计算两个字符串相似度这个概念。
以下叙述摘自编程之美一书:
许多程序会大量使用字符串。对于不同的字符串,我们希望能够有办法判断其相似程序。我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
1.修改一个字符(如把“a”替换为“b”);
2.增加一个字符(如把“abdd”变为“aebdd”);
3.删除一个字符(如把“travelling”变为“traveling”);
比如,对于“abcdefg”和“abcdef”两个字符串来说,我们认为可以通过增加/减少一个“g”的方式来达到目的。上面的两种方案,都仅需要一 次 。把这个操作所需要的次数定义为两个字符串的距离,而相似度等于“距离+1”的倒数。也就是说,“abcdefg”和“abcdef”的距离为1,相似度 为1/2=0.5。
给定任意两个字符串,你是否能写出一个算法来计算它们的相似度呢?
原文的分析与解法
不难看出,两个字符串的距离肯定不超过它们的长度之和(我们可以通过删除操作把两个串都转化为空串)。虽然这个结论对结果没有帮助,但至少可以知道,任意两个字符串的距离都是有限的。我们还是就住集中考虑如何才能把这个问题转化成规模较小的同样的子问题。如果有两个串A=xabcdae和B=xfdfa,它们的第一个字符是 相同的,只要计算A[2,...,7]=abcdae和B[2,...,5]=fdfa的距离就可以了。但是如果两个串的第一个字符不相同,那么可以进行 如下的操作(lenA和lenB分别是A串和B串的长度)。
1.删除A串的第一个字符,然后计算A[2,...,lenA]和B[1,...,lenB]的距离。
2.删除B串的第一个字符,然后计算A[1,...,lenA]和B[2,...,lenB]的距离。
3.修改A串的第一个字符为B串的第一个字符,然后计算A[2,...,lenA]和B[2,...,lenB]的距离。
4.修改B串的第一个字符为A串的第一个字符,然后计算A[2,...,lenA]和B[2,...,lenB]的距离。
5.增加B串的第一个字符到A串的第一个字符之前,然后计算A[1,...,lenA]和B[2,...,lenB]的距离。
6.增加A串的第一个字符到B串的第一个字符之前,然后计算A[2,...,lenA]和B[1,...,lenB]的距离。
在这个题目中,我们并不在乎两个字符串变得相等之后的字符串是怎样的。所以,可以将上面的6个操作合并为:
1.一步操作之后,再将A[2,...,lenA]和B[1,...,lenB]变成相字符串。
2.一步操作之后,再将A[2,...,lenA]和B[2,...,lenB]变成相字符串。
3.一步操作之后,再将A[1,...,lenA]和B[2,...,lenB]变成相字符串。
通过以上1和6,2和5,3和4的结合操作,最后两个字符串每个对应的字符会相同,但是这三种操作产生的最终的两个字符串是不一样的。我们不知道通过上述的三种结合那种使用的操作次数是最少的。所以我们要比较操作次数来求得最小值。