1. 计算机考研:数据结构常用算法解析(4)
第四章
KMP算法和朴素的匹配算法的关键区别就是解决了主串指针i的回溯,原理如下:
设主串S[]和模式串T[],如比较到模式串的第j个字符。 当主串指针i和模式串指针j比较时 ,说明他们前面的所有字符都已经对应相等了。而
Next[j]=k的定义是T1T2…Tk-1==Tj-k+1Tj-k+2….Tj-1且k是最大了,没有更长的了。
所以Si和Tj比较失败时Si和Tk去比较。不可能有 这种匹配的成功,因为S2S3…..Si-1= =T2T3……Tj-1,而T2T3….Tj-1是不等于T1T2….Tj-2。除非next[j]=j-1;因为next定义的是最长的。所以任何挪动小于next[j]的串的匹配都是不能成功的。直到Tnext[j]和S[i]相比是才是最早有可能成功的。
Int KMP_Index(Sstring S,Sstring T,int pos)
{
i=pos;j=1;
while(i<=S[0]&&j<=T[0])
{
If(j=0||S[i]=T[j])//j=0表示模式串已经退到起点了说明在这个位置彻底不可能了,
{ ++i; ++j; } //i必须下移,j回到1开始
Else j=next[j];
}
If(j>T[0]) return i-T[0];
Else return 0;
}
求next[j]的方法和原理
设尺肆羡k=next[j];那么T1T2…Tk-1= =Tj-k+1……Tj-2Tj-1;
若Tj= =Tk,那么T1T2…Tk-1Tk= =Tj-k+1……Tj-2Tj-1Tj;
所以 next[j+1]=k+1=next[j]+1;且T1T2…Tk-1= =Tj-k+1……Tj-2Tj-1已经是
最长雹弊的序列,所以k+1也是next[j+1]最长的
若Tj不等于Tk,那么就需要重找了。即…..Tj-1Tj ?,
T1T2….
所以next[j+1]首先=k=next[j]; 即…..Tj-1Tj ?,
T1T2…Tk-1.
若不相等,则next[j+1]=next[k]; 即…..Tj-1Tj ?,
T1T2….Tnext[k]-1
直到找到这样的序列, 即…..Tj-1Tj ?,
T1T2 ...To
那么,next[j+1]=next[next[j]]=next[next[next[j]]]…..=o+1;
Void get_next(Sstring T,int next[])
{
i=1; next[1]=0; j=0;//i表示当前求的next
While(i
{
if(j=0 | | T[i]=T[j])
{
++i;
++j;
next[i]=j;
}
Else j=next[j];
}
}
因为 next[ ] 在匹配过程中,若T[ j ]=T[ next[j] ];那么当 S[i]不等于T[j],
S[ i]肯定也不等于T[k= next[j] ];
所以 S[i]应直接与T[next[k]]比较,而我们通陵拍过将next[j]修正
为nextval[j]=next[next[j]];这样能使比较更少。
Void get_nextval(Sstring T,int nextval[])
{
i=1; nextval[1]=0; j=0;
while(i
{
if(j=0 || T[i]= T[j])
{
++i;
++j;
if(T[i]!=T[j])
nextval[i]=j;
else
nextval[i]=next[j];
}
else
j=nextval[j];
}
空格串是指__由空格字符(ASCII值32)所组成的字符串,其长度等于 空格个数____。
在模试匹配KMP算法中所用失败函数f的定义中,为何要求p1p2……pf(j)为p1p2……pj两头匹配的真子串?且为最大真子串?
失败函数(即next)的值只取决于模式串自身,若第j个字符与主串第i个字符失配时,主串不回溯, 模式串用第k(即next[j])个字符与第i个相比,有‘p1…pk-1’=‘pj-k+1…pj-1’,为了不因模式串右移与主串第i个字符比较而丢失可能的匹配,对于上式中存在的多个k值,应取其中最大的一个。这样,因j-k最小,即模式串向右滑动的位数最小,避免因右移造成的可能匹配的丢失。
第4章节有关数据结构算法,上文中为大家作了分析,希望考生对于这些算法能够熟记于心,方便考试的应用和日后的实际操作,预祝大家都能够取得好成绩,加油!
更多详情请点击:计算机考研:数据结构常用算法解析汇总
考研有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/
2. 计算机 算法设计题
1.(1)
存在常数c1,f(n)<=c1*s(n)
存在常数c2,g(n)<=c2*r(n)
令常数C=max(c1,c2)
则f(n)+g(n)<=c1*s(n)+c2*r(n)<=C*(s(n)+r(n))=O(s(n)+r(n))
1.(2)
令常数D=c1*c2
则f(n)*g(n)<=c1*s(n)*c2*r(n)=D*s(n)*r(n)=O(s(n)*r(n))
3. 计算机二级选择题干货(五)——数据结构和算法
1、线性表、栈和队列等数据结构所表达和处理的数据以线性结构为组织形式。栈是一种特殊的线性表,这种线性表只能在固定的一端进行插入和删除操作,允许插入和删除的一端称为栈顶,另一端称为栈底。一个新元素只能从栈顶一端进入,删除时,只能删除栈顶的元素,即刚刚被插入的元素。所以栈又称后进先出表(Last In First Out);队列可看作是插入在一端进行,删除在另一端进行的线性表,允许插入的一端称为队尾,允许删除的一端称为队头。在队列中,只能删除队头元素,队列的最后一个元素一定是最新入队的元素。因此队列又称先进先出表(First In First Out)。
2、栈和队列都是一种特殊的操作受限的线性表,只允许在端点处进行插入和删除。二者的区别是:栈只允许在表的一端进行插入或删除操作,是一种"后进先出"的线性表;而队列只允许在表的一端进行插入操作,在另一端进行删除操作,是一种"先进先出"的线性表。
3、栈是一种特殊的线性表,这种线性表只能在固定的一端进行插入和删除操作,允许插入和删除的一端称为栈顶,另一端称为栈底。一个新元素只能从栈顶一端进入,删除时,只能删除栈顶的元素,即刚刚被插入的元素。所以栈又称先进后出表(FILO-First In Last Out)。线性表可以顺序存储,也可以链式存储,而栈是一种线性表,也可以采用链式存储结构。
4、栈和队列都是一种特殊的操作受限的线性表,只允许在端点处进行插入和删除。二者的区别是:栈只允许在表的一端进行插入或删除操作,是一种"后进先出"的线性表;而队列只允许在表的一端进行插入操作,在另一端进行删除操作,是一种"先进先出"的线性表。
5、在栈中,栈底指针不变,栈中元素随栈顶指针的变化而动态变化
top=0表示栈空,top=50表示栈满。入栈操作首先将top加1,然后将新元素插入到top指针指向的位置;退栈操作首先将top指针指向的元素赋给一个指定的变量,然后将top减1。栈顶指针top动态反映了栈中元素的变化情况。
6、栈是一种先进后出的线性表,栈实际上也是线性表,只不过是一种特殊的线性表。队列是指允许在一端进行插入、而在另一端进行删除的线性表,队列是一种"先进先出"或"后进后出"的线性表
队列是指允许在一端进行插入、而在另一端进行删除的线性表。它又称为"先进先出"或"后进后出"的线性表,体现了"先来先服务"的原则。
7、带链的队列也是线性链表,在线性链表中指向线性表中的第一个结点的指针称为头指针,头指针为NULL或0时称为空表,指向队尾元素的指针称为尾指针。队列在队尾插入元素,称为入队运算;在队头删除元素,称为退队运算。带链队列在开辟存储空间时,可以按照存储空间地址增大的方向开辟,也可以按照存储空间地址减少的方向开辟。
8、所谓循环队列,就是将队列存储空间的最后一个位置绕到第1个位置,形成逻辑上的环状空间,供队列循环使用。所以循环队列还是属于线性结构。循环队列的头指针front指向队列的第一个元素的前一位置,队尾指针rear指向队列的最后一个元素,循环队列的动态变化需要头尾指针共同反映循环队列的长度是:(sq.rear-sq.front+maxsize)%maxsize,所以循环队列的长度是由队头和队尾指针共同决定的
在循环队列中,用队尾指针rear指向队列中的队尾元素,用排头指针front指向排头元素的前一个位置。
循环队列主要有两种基本运算:入队运算与退队运算。每进行一次入队运算,队尾指针就进一。每进行一次退队运算,排头指针就进一。当rear或front的值等于队列的长度+1时,就将rear或front的值置为1。一般情况下,rear大于front,因为入队的元素肯定比出队的元素多。特殊的情况是rear到达数组的上限之后又从数组的低端开始,此时,rear是小于front的。
循环队列就是将队列存储空间的最后一个位置绕到第一个位置,形成逻辑上的环状空间,供队列循环使用。在实际应用中,队列的顺序存储结构一般采用循环队列的形式。因此,循环队列不是队列的一种链式存储结构。循环队列是一种存储结构,因此循环队列是一种物理结构,而不是逻辑结构。循环队列是队列的顺序存储结构,因此循环队列是线性结构。
9、循环队列不同于循环链表,循环队列是顺序存储结构,循环链表是链式存储结构。双向链表是链式存储结构,其中每个结点都有左指针和右指针,不同于二叉树结点的左子树指针和右子树指针。非线性结构和线性结构是数据的逻辑结构,顺序和链式是数据的存储结构,例如二叉树是非线性结构,也可以按照层序进行顺序存储。
10、非线性结构的逻辑特征是一个结点元素可能对应多个直接前驱和多个后驱。常见的非线性结构有:树(二叉树等),图(网等)。
11、由于二叉树的存储结构中每一个存储结点有两个指针域,因此,二叉树的链式存储结构也称为二叉链表,二叉链表属于非线性结构。
12、遍历是指不重复的访问所有结点。线性单链表每个结点只有一个指针域,由这个指针只能找到后件结点,但不能找到前件结点。双向链表中的每个结点设置两个指针,左指针指向其前件结点,右指针指向其后件结点。循环链表中增加了一个表头结点,循环链表中的所有结点的指针构成了一个环状链。二叉链表即二叉树的链式存储结构,每个存储结点有两个指针域,左指针域指向该结点的左子结点的存储地址,右指针域指向该结点的右子结点的存储地址。
13、线性表的顺序存储结构具有两个基本特点:(1)线性表中所有元素所占的存储空间是连续的;(2)线性表中各元素在存储空间中是按逻辑顺序依次存放的。
14、循环链表具有以下两个特点:(1)在循环链表中增加了一个表头结点,其数据域为任意或者根据需要来设置,指针域指向线性表的第一个元素的结点。循环链表的头指针指向表头结点。(2)循环链表中最后一个结点的指针域不是空,而是指向表头结点。即在循环链表中,所有结点的指针构成了一个环状链。
15、在循环链表中,只要指出表中任何一个结点的位置,就可以从它出发访问到表中其他所有的结点,而线性单链表做不到这一点。
16、根据二叉树的性质:二叉树第i(i≥1)层上至多有2i-1个结点。
17、所谓满二叉树是指这样的一种二叉树:除最后一层外,每层上的所有结点都有两个子结点。这就是说,在满二叉树中,每一层上的结点数都达到最大值,即在满二叉树的第K层上有2K-1个结点,且深度为m的满二叉树有2m个结点。
18、在任意一颗树中,结点总数=总分支数目+1
19、二叉树的性质:在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。本题中度为2的结点数为n,故叶子结点数为n+1个。
二叉树的性质:在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。
20、在用完全二叉树表示堆,树中所有非叶子结点值均不小于其左右子树的根结点值,因此,堆顶元素必为序列的n个元素中的最大项。
21、作为一个算法,一般应具有以下几个基本特征。
可行性
确定性
有穷性
拥有足够的情报
22、计算机算法是指解题方案的准确而完整的描述
算法的有穷性,是指算法必须在有限的时间内做完,即算法必须能在执行有限个步骤之后终止。
23、希尔排序法的基本思想是:将整个无序序列分割成若干小的子序列分别进行插入排序。所以希尔排序法属于插入类排序,但它对简单插入排序做了很大的改进。
24、快速排序的基本思想是,通过一趟排序将待排序记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,再分别对这两部分记录继续进行排序,以达到整个序列有序;插入排序的基本操作是指将无序序列中的各元素依次插入到已经有序的线性表中,从而得到一个新的序列;选择排序的基本思想是:扫描整个线性表,从中选出最小的元素,将它交换到表的最前面(这是它应有的位置),然后对剩下的子表采用同样的方法,直到表空为止;归并排序是将两个或两个以上的有序表组合成一个新的有序表。
25、在单链表中,增加头结点的目的是______。
头结点不仅标识了表中首结点的位置,而且根据单链表(包含头结点)的结构,只要掌握了表头,就能够访问整个链表,因此增加头结点目的是为了便于运算的实现。
26、算法分析是指对一个算法的运行时间和占用空间做定量的分析,一般计算出相应的数量级,常用时间复杂度和空间复杂度表示。分析算法的目的就是要降低算法的时间复杂度和空间复杂度,提高算法的执行效率。
27、算法是指解题方案的准确而完整的描述。但算法不等于程序,也不等于计算方法。当然,程序也可以作为算法的一种描述,但程序通常还需要考虑很多与方法和分析无关的细节问题,这是因为在编写程序时要受到计算机系统运行环境的限制。通常,程序的编制不可能优于算法的设计。作为一个算法,一般应具有可行性、确定性、有穷性、拥有足够情报四个基本特征。因此设计算法时不仅仅要考虑结果的可靠性,即不仅考虑算法结果的可行性,还要考虑步骤的确定性,时间和步骤的有穷性等。因此,算法是一组严谨地定义运算顺序的规则,并且每一个规则都是有效的,且是明确的,此顺序将在有限的次数下终止。
28、一个算法通常由两种基本要素组成:一是对数据对象的运算和操作,二是算法的控制结构。因此设计算法时不仅需要考虑数据结构的设计,还要考虑数据的操作和运算及各操作之间的执行顺序。
29、在有向图中,若任意两个顶点都连通,则称该图是强连通图,这样的有向图的形状是环状,因而至少应有n条边。
30、当数据表A中每个元素距其最终位置不远,说明数据表A按关键字值基本有序,在待排序序列基本有序的情况下,采用插入排序所用时间最少。
31、数据的逻辑结构在计算机存储空间中的存放形式称为数据的存储结构(也称数据的物理结构)。
32、假设线性表的长度为n,则在最坏情况下,冒泡排序需要经过n/2遍的从前往后扫描和n/2遍的从后往前扫描,需要比较次数为n(n-1)/2。快速排序法的最坏情况比较次数也是n(n-1)/2
(1)冒泡排序法:是一种最简单的交换类排序法,它是通过相邻数据元素的交换逐步将线性表变成有序。假设线性表的长度为n,则在最坏情况下,冒泡排序需要经过n/2遍的从前往后的扫描和n/2遍的从后往前的扫描,需要比较的次数为n(n-1)/2次。
(2)简单插入排序法:在简单插入排序法中,每一次比较后最多移掉一个逆序,因此,这种排序方法的效率与冒泡排序法相同。在最坏情况下,简单插入排序需要n(n-1)/2次比较。
(3)简单选择排序法:对于长度为n的序列,选择排序需要扫描n-1遍,每一遍扫描均从剩下的子表中选出最小的元素,然后将该最小的元素与子表中的第一个元素进行交换。简单选择排序法在最坏情况下需要比较n(n-1)/2次。
(4)堆排序法:堆排序的方法为:①首先将一个无序序列建成堆。②然后将堆顶元素(序列中的最大项)与堆中最后一个元素交换(最大项应该在序列的最后)。在最坏情况下,堆排序需要比较的次数为。
假设线性表的长度为16,那么冒泡排序、直接插入排序、简单选择排序都需要比较120次,而堆排序需要比较64次。
33、对于长度为n的线性表,在最坏的情况下,快速排序所需要的比较次数为n(n-1)/2;冒泡排序所需要的比较次数为n(n-1)/2;直接插入排序所需要的比较次数为n(n-1)/2;堆排序所需要的比较次数为。
34、在进行顺序查找过程中,如果线性表中的第一个元素就是被查找元素,则只需做一次比较就查找成功,查找效率最高;但如果被查找的元素是线性表中的最后一个元素,或者被查找的元素根本就不在线性表中,则为了查找这个元素需要与线性表中所有的元素进行比较,这是顺序查找的最坏情况。所以对长度为n的线性表进行顺序查找,在最坏情况下需要比较n次。
35、二分法查找只适用于顺序存储的有序表。在此所说的有序表是指线性表中的元素按值非递减排列(即从小到大,但允许相邻元素值相等)。
二分法检索要求线性表结点按关键值排序且以顺序方式存储。在查找时,首先与表的中间位置上结点的关键值比较,若相等则检索成功;否则根据比较结果确定下一步在表的前半部分或后半部分继续进行。二分法检索的效率比较高,设线性表有n个元素,则最多的检索次数为大于log2n(2为底数)的最小整数,最少的检索次数为1。
36、一般来说,一种数据的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序、链接、索引等存储结构。而采用不同的存储结构,其数据处理的效率是不同的。
37、顺序存储结构就是用一组地址连续的存储单元依次存储该线性表中的各个元素,链式存储结构中各数据结点的存储序号是不连续的,并且各结点在存储空间中的位置关系与逻辑关系也不一致。两者都可以存储线性的、有序的逻辑结构,顺序结构使用的是连续物理空间,链式结构可以使用零散的物理空间存储,链式结构更灵活,不存在谁节约空间的说法
38、顺序存储结构中,数据元素存放在一组地址连续的存储单元中,每个数据元素地址可通过公式LOC(ai)=LOC(a1)+(i-1)L计算得到,从而实现了随机存取。对于链式存储结构,要对某结点进行存取,都得从链的头指针指向的结点开始,这是一种顺序存取的存储结构。
39、链式存储结构克服了顺序存储结构的缺点:它的结点空间可以动态申请和释放;它的数据元素的逻辑次序靠结点的指针来指示,不需要移动数据元素。故链式存储结构下的线性表便于插入和删除操作。
40、线性表的顺序存储结构的存储空间只用于存放结点数据,而链式存储结构的存储空间不仅要存放结点数据,还要存放数据的指针,所以线性表的链式存储结构所需要的存储空间一般要多于顺序存储结构
41、在进行顺序查找过程中,如果线性表中的第1个元素就是被查找元素,则只需做一次比较就查找成功,查找效率最高;但如果被查找的元素是线性表中的最后一个元素,或者被查找的元素根本就不在线性表中,则为了查找这个元素需要与线性表中所有的元素进行较,这是顺序查找的最坏情况。所以对长度为n的线性表进行顺序查找,在最坏情况下需要比较n次
42、对于长度为n的有序线性表,在最坏情况下,二分查找只需要比较 次,而顺序查找需要比较n次。二分法查找只适用于顺序存储的有序表,如果采用链式存储结构,也只能用顺序查找,所以,对长度为n的有序链表进行查找,最坏情况下需要的比较次数为n
43、根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:线性结构与非线性结构。
44、如果一个非空的数据结构满足下列两个条件:(1)有且只有一个根结点;(2)每一个结点最多有一个前件,也最多有一个后件。则称该数据结构为线性结构,又称线性表。
45、有一个以上根结点的数据结构肯定是非线性结构,循环链表、双向链表是线性结构;线性表、栈与队列、线性链表都是线性结构,而二叉树是非线性结构。
46、在链表中,如果有两个结点的同一个指针域的值相等,则该链表一定是非线性结构
47、线性表的链式存储结构称为线性链表,为了适应线性表的链式存储结构,计算机存储空间被划分为一个一个小块,每一小块占若干字节,通常称这些小块为存储结点。每一个存储结点分为两部分:一部分用于存储数据元素的值,称为数据域;另一部分用于存放下一个数据元素的存储序号,即指向后件的结点,称为指针域。在链式存储结构中,存储数据结构的存储空间可以不连续,各数据结点的存储顺序与数据元素之间的逻辑关系可以不一致。为了要在线性链表中插入一个新元素,首先要给该元素分配一个新结点,以便用于存储该元素的值,然后将存放新元素值的结点链接到线性表中指定的位置。在线性链表的插入过程中不发生数据无素移动的现象,只需改变有关结点的指针即可,从而提高了插入的效率。为了在线性链表中删除包含指定元素的结点,首先要在线性链表中找到这个结点,然后将要删除结点放回到可利用栈。在线性链表中删除一个元素后,不需要移动表的数据元素,只需改变被删元素所在结点的前一个结点的指针域即可。因此,进行插入与删除时,不需要移动表中的元素。
48、在先左后右的原则下,根据访问根结点的次序,二叉树的遍历可以分为3种:前序遍历、中序遍历和后序遍历。
前序遍历是指在访问根结点、遍历左子树与遍历右子树这三者中,首先访问根结点,然后遍历左子树,最后遍历右子树;并且遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
后序遍历指在访问根结点、遍历左子树与遍历右子树这三者中,首先遍历左子树,然后遍历右子树,最后访问根结点;并且遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问根结点。
二叉树的中序遍历指在访问根结点、遍历左子树与遍历右子树这三者中,首先遍历左子树,然后访问根结点,最后遍历右子树;并且遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。
49、链表有线性链表,也有非线性链表。线性链表和二叉树链表的结点都有两个指针域,前者是线性结构,后者是非线性结构。线性单链表中的结点只有一个指针,叶子结点一般是对树结构而言,树结构是非线性结构,不是线性表。
50、算法的复杂度主要包括时间复杂度和空间复杂度:算法在运行过程中需辅助存储空间的大小称为算法的空间复杂度;算法的时间复杂度是指执行算法所需要的计算工作量,即算法执行过程中所需要的基本运算次数,为了能够比较客观地反映出一个算法的效率,在度量一个算法的工作量时,不仅应该与所使用的计算机、程序设计语言以及程序编制者无关,而且还应该与算法实现过程中的许多细节无关。为此,可以用算法在执行过程中所需基本运算的执行次数来度量算法的工作量。二者没有直接关系。
51、一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。一个算法所占用的存储空间包括程序所占的空间、输入的初始数据所占的存储空间以及算法执行过程中所需要的额外空间。其中额外空间包括算法程序执行过程中的工作单元以及某种数据结构所需要的附加存储空间。如果额外空间相对于问题规模来说是常数,则称该算法是原地(in place)工作的。
52、我们通常用时间复杂度和空间复杂度来衡量算法效率,算法的时间复杂度是指执行算法所需要的计算工作量;算法所执行的基本运算次数与问题的规模有关,而一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间;一般来说,一种数据的逻辑结构根据需要可以表示成多种存储结构。
所谓算法的时间复杂度,是指执行算法所需要的计算工作量。为了能够比较客观地反映出一个算法的效率,在度量一个算法的工作量时,不仅应该与所使用的计算机、程序设计语言以及程序编制者无关,而且还应该与算法实现过程中的许多细节无关。为此,可以用算法在执行过程中所需基本运算的执行次数来度量算法的工作量。
53、子程序调用是一种层次关系,子程序调用功能模块,调用功能模块的个数也不确定,可以是一个,也可以是多个。二叉树是一种很有用的非线性结构,二叉树不同于树形结构。二叉树具有以下两个特点:①非空二叉树只有一个根结点;②每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。选项D规定每个结点只能有两个后件。在子程序调用中,调用的功能模块可以是多个,可以调用超过两个功能模块。
54、结构图的深度表示控制的层数结构图的深度表示控制的层数
55、数据结构是指反映数据元素之间关系的数据元素集合的表示。更通俗地说,数据结构是指带有结构的数据元素的集合。所谓结构实际上就是指数据元素之间的前后件关系。线性结构与非线性结构都可以是空的数据结构。一个空的数据结构究竟是属于线性结构还是属于非线性结构,还要根据具体情况来确定。如果对该数据结构的运算是按线性结构的规则来处理的,则属于线性结构;否则属于非线性结构。
4. 计算机算法分析考试:动态规划0-1背包问题,怎么算
问题描述:
给定n种物品和一背包,物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品(物品不能分割),使得装入背包中物品的总价值最大?
抽象描述如下:
x[n]:表示物品的选择,x[i]=1表示选择放进物品i到背包中。