‘壹’ ACM 算法超难题目
出题人的表达能力太差,题目叙述得很糟糕,最后两个例子也错了
比较好的叙述是,输入n,输出从0到32中取6项按字典序排序下的第n个组合(从第0个组合0,1,2,3,4,5开始计)
这种谈不上什么难题,只不过是入门级的问题
在给定前k项的(记第k项为m)情况下余下的项共有C(32-m,6-k)种情况,这里C(x,y)表示x取y的组合数,以此编程即可
给你一个例子
#include<stdio.h>
intbinom(intn,intm)
{
inti,c=1;
if(2*m>n)
n=n-m;
for(i=1;i<=m;i++)
c=c*(n+1-i)/i;
returnc;
}
intmain()
{
inti,n;
intA[6]={-1};
while(scanf("%d",&n)!=EOF)
{
n++;
if(n<=0||n>binom(33,6))
{
printf("Invalidinput ");
continue;
}
for(i=1;i<=5;i++)
{
for(A[i]=A[i-1]+1;;A[i]++)
{
intt=binom(32-A[i],6-i);
if(n>t)
n-=t;
else
break;
}
printf("%d,",A[i]);
}
printf("%d ",A[i-1]+n);
}
return0;
}
‘贰’ 怎样求大组合数(取模)(ACM算法)
这种题目然做过的,
意思比较简单,就由 m 个共 0 和 n 个 1 组成一个串,但从左到右要1出现的次数不少于0出现的次数。
由大牛的算法: 结果就是 C(m+n, n) - C(m+n, m-1) 再取模,我们可以对式子化简一下就是:
(n+m)!*
(n-m+1) / ((m)!* (n+1)!)
再取模,但由于组合数很大,直接用大数乘除就会超时了,看了别人的报告才知道原来可以用素数化简快速求模的, n! = 2^p[i] *
3^p[i] * 5^p[i]*...... 再求模就可以很快了~(^ = ^)~。。。
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define M 2000005
#define mm 20100501
bool sig[M];
int prime[150000], p[150000], len; // prime 记录素数, p 记录素数的幂 len 记录长度
void getprime() // 筛法找素数
{
int i,j,k=0;
prime[k++] = 2;
for(i=3; i<=M; i+=2)
{
if( !sig[i] )
{
prime[k++] = i;
for(j=i; j<=M; j+=i)
sig[j] = 1;
}
}
}
void get(int k, int s) // K! 的素数分解, S为指数的加减(分母,分子)
{
int i, mid;
for(i=0; prime[i]<=k && prime[i]; i++)
{
mid = k;
while(mid)
{
if(s)
p[i] += mid/prime[i];
else
p[i] -= mid/prime[i];
mid /= prime[i];
}
}
if(len < i)
len = i;
}
__int64 cal() // 计算结果 (prime[i...]^p[i...]) % mm
{
__int64 i,ans = 1;
for(i=0; i<=len; i++)
{
if( p[i] )
{
__int64 t = prime[i], b = p[i], ret = 1;
while(b) //计算 (t^b) % mm
{
if(b%2) ret *= t %mm;
t = t*t%mm;
b /= 2;
}
ans = ( ans*ret ) % mm;
}
}
return ans;
}
int main()
{
int t,m,n,i,mid;
__int64 ans;
getprime();
cin>>t;
while(t--)
{
cin>>n>>m;
len = 0;
memset(p, 0, sizeof(p));
mid = n-m+1; //先前要把 n-m+1 的因子加进 P 中去才能使 (m+n)! / ((m)!*(n+1)!) 整除
for(i=0; mid>1; i++)
{
if( mid%prime[i] == 0)
{
while(mid%prime[i]==0)
{
p[i] += 1;
mid /= prime[i];
}
}
}
get(m+n, 1);
get(m, 0);
get(n+1, 0);
ans = cal();
printf("%I64d\n", ans);
}
return 0;
}
可以用素数分解法,
先求出上面和下面的素数表示,然后约分后,再用求幂公式
‘叁’ acmdfs判断无向图是否有环
如果存在回路,则必存在一个子图,是一个环路。环路中所有顶点的度>=2。
n算法:
第一步:删除所有度<=1的顶点及相关的边,并将另外与这些边相关的其它顶点的度减一。
第二步:将度数变为1的顶点排入队列,并从该队列中取出一个顶点重复步骤一。
如果最后还有未删除顶点,则存在环,否则没有环。
n算法分析:
由于有m条边,n个顶点。
i)如果m>=n,则根据图论知识可直接判断存在环路。(证明:如果没有环路,则该图必然是k棵树 k>=1。根据树的性质,边的数目m = n-k。k>=1,所以:m<n)
ii)如果m<n 则按照上面的算法每删除一个度为0的顶点操作一次(最多n次),或每删除一个度为1的顶点(同时删一条边)操作一次(最多m次)。这两种操作的总数不会超过m+n。由于m<n,所以算法复杂度为O(n)。
注:
该方法,算法复杂度不止O(V),首先初始时刻统计所有顶点的度的时候,复杂度为(V + E),即使在后来的循环中E>=V,这样算法的复杂度也只能为O(V + E)。其次,在每次循环时,删除度为1的顶点,那么就必须将与这个顶点相连的点的度减一,并且执行delete node from list[list[node]],这里查找的复杂度为list[list[node]]的长度,只有这样才能保证当degree[i]=1时,list[i]里面只有一个点。这样最差的复杂度就为O(EV)了。