Ⅰ 本源量子联合中科大在量子近似优化算法研究中取得新进展
近日,本源量子联合中科大研究团队在量子近似优化算法(Quantum Approximate Optimization Algorithm,后称“QAOA”)的研究中取得最新进展。该研究证明了S-QAOA算法(Shortcuts to Quantum Approximate Optimization Algorithm,后称“S-QAOA”)是利用现阶段的含噪声量子计算机求解组合优化问题的理想选择,进一步推进了量子计算在组合优化问题上的应用。
什么是组合优化问题?以着名的旅行商问题(TSP)为例,假设有渗乎磨一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径长度为所有路径之中的最小值。这就是一个典型的组合优化问题。
从广义上讲,组合优化问题是涉及从有限的一组对象中找到“最佳”对象的问题。“最佳”是通过给定的评估函数来测量的,该函数将对象映射到某个分数或者成本,目标是找到最高评估分数和最低成本的对象。组合优化往往涉及排序、分类、筛选等问题。
组合优化问题丛斗在现实生活中具有广泛的应用,比如交通、物流、调度、金融等领域的许多问题都是组合优化问题。并且很多组合优化问题对应的经典算法都有较高的复杂度,在问题规模较大时,经典计算机难以快速地找到这些问题的最优解。因此,利用量子计算加速组合优化问题的求解具有重要的意义。
在含噪声的中等规模(NISQ)的量子时代,可靠的量子操作数会受到量子噪声的限制(目前量子噪声包括量子退相干、旋转误差等)。因此,人们对量子-经典混合算法很感兴趣,这类混合算法可以借助经典优化器来优化量子线路中的参数,从而选择最优的演化路径,以降低量子线路深度。比较着名的一类量子-经典混合算法就是量子近似优化算法(QAOA),它有望为组合优化问题的近似解的求解带来指数级的加速。
研究人员表示,理论上,如果量子线路足够深,QAOA可以得到较好的近似解。但由于量子噪声引起的误差会随着量子线路深度的增加而累积,当量子线路深度较大时,QAOA的性能实际上会下降。因此,在当前的量子计算机上展现QAOA算法的优势是一项具有挑战性的任务,降低QAOA算法的线路深度对于在现阶段的量子计算机上展现QAOA算法的优势具有重要意义。
为了减少量子电路的深度,研究人员提出了一种新的思路,称为“Shortcuts to QAOA”:(S-QAOA)。首先,在S-QAOA中考虑了额外的两体相互作用,在量子电路中加入与YY相互作用相关的双门以补偿非绝热效应,从而加速量子退火过程,加速QAOA的优化;其次,释放了两体相互作用(包括ZZ相互作用和YY相互作用)的参数自由度,增强量子电路的表顷此示能力,从而降低量子线路的深度。数值模拟结果表明,与QAOA相比,S-QAOA在量子线路更浅的情况下可以获得较好的结果。
研究人员通过引入更多的两体相互作用和释放参数自由度来改进QAOA算法,降低QAOA算法需要的线路深度,使得QAOA算法更适合现阶段的含噪声的量子计算机。由于该算法利用了STA(Shortcuts to adiabaticity)的原理,因此研究人员将其称为“Shortcuts to QAOA”。
本源量子研究人员表示:“在S-QAOA中,参数自由度的释放是通过对梯度较大的参数进行进一步的优化,但是是否有更好的方式挑选出最重要的参数做优化,还是值得 探索 和研究的一个方向。我们将在下一步的工作中研究更多的案例,以验证和完善我们的想法。我们希望我们的方法可以为尽早实现量子优越性提供新的方法和思路。”
Ⅱ 量子遗传算法的国内外研究现状
当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中一个典型例子,也是近代科学技术发展的一个显着特点。遗传算法的蓬勃发展正体现了科学发展的这一特点和趋势。
制造机器智能一直是人类的梦想,人们为此付出了巨大的努力。人工智能技术的出现,就是人们得到的成果。但是,近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。
众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。遗传算法就是在这种背景下产生并经实践证明特别有效的算法。
遗传算法(Genetic Algorithm, GA)是近年来迅速发展起来的一种全新的随机搜索与优化算法,其基本思想是基于Darw in的进化论和Mendel的遗传学说。该算法由密执安大学教授Holland及其学生于1975年创建。此后,遗传算法的研究引起了国内外学者的关注。自1985年以来.国际上已召开了多次遗传算法的学术会议和研讨会.国际遗传算法学会组织召开的ICGA( International Conference on Genetic Algorithms)会议和FOGA( Workshop on Foundation of Genetic Algorithms)会议。为研究和应用遗传算法提供了国际交流的机会。
作为一种通用的问题求解方法,遗传算法采用简单的编码技术来表示各种复杂的结构并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。
近年来,遗传算法已被成功地应用于下业、经济答理、交通运输、工业设计等不同领域.解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。本文将从遗传算法的理论和技术两方而概述目前的研究现状。描述遗传算法的主要特点、基木原理以及各种改进算法,介绍遗传算法的程序设计。
遗传程序设计是借鉴生物界的自然选择和遗传机制,在遗传算法的基础上发展起来的搜索算法,它己成为进化计算的一个新分支。在标准的遗传算法中,由定长字符串(问题的可行解)组成的群体借助于复制、交叉、变异等遗传操作不断进化找到问题的最优解或次优解。遗传程序设计运用遗传算法的思想,常采用树的结构来表示计算机程序,从而解决问题。对于许多问题,包括人工智能和机器学习上的问题都可看作是需要发现一个计算机程序,即对特定输入产生特定输出的程序,形式化为程序归纳,那么遗传程序设计提供了实现程序归纳的方法。
把遗传算法和计算机程序结合起来的思想出现在遗传算法中,Holland把产生式语言和遗传算法结合起来实现分类系统,还有一些遗传算法应用领域的研究者将类似于遗传算法的遗传操作施加于树结构的程序上。
近年来,遗传程序设计运用遗传算法的思想自动生成计算机程序解决了许多问题,如预测、分类、符号回归和图像处理等,作为一种新技术它己经与遗传算法并驾齐驱。 1996年,举行了第1次遗传程序设计国际会议,该领域己引起越来越多的相关学者们的兴趣。
1967年,Holland的学生J.D.Bagley在博士论文中首次提出“遗传算法(Genetic Algorithms)”一词。此后,Holland指导学生完成了多篇有关遗传算法研究的论文。1971年,R.B.Hollstien在他的博士论文中首次把遗传算法用于函数优化。1975年是遗传算法研究历史上十分重要的一年。这一年Holland出版了他的着名专着《自然系统和人工系统的自适应》(Adaptation in Natural and Artificial Systems),这是第一本系统论述遗传算法的专着,因此有人把1975年作为遗传算法的诞生年。Holland在该书中系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极其重要的模式理论(schema theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。同年,K.A.De Jong完成了他的博士论文《一类遗传自适应系统的行为分析》(An Analysis of the Behavior of a Class of Genetic Adaptive System)。该论文所做的研究工作,可看作是遗传算法发展进程中的一个里程碑,这是因为,他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien 一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论,迄今仍具有普遍的指导意义。
进入八十年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。1985年,在美国召开了第一届遗传算法国际会议(International Conference on Genetic Algorithms ,ICGA),并且成立国际遗传算法学会(International Society of Genetic Algorithms ,ISGA),以后每两年举行一次。
1989年,Holland的学生D.E.Goldberg出版了专着《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search , Optimization, and Machine Learning)。该书总结了遗传算法研究的主要成果,对遗传算法及其应用作了全面而系统的论述。同年,美国斯坦福大学的Koza基于自然选择原则创造性地提出了用层次化的计算机程序来表达问题的遗传程序设计( genetic programming, GP)方法,成功地解决了许多问题。
在欧洲,从1990年开始每隔一年举办一次Parallel Problem Solving from Nature 学术会议,其中遗传算法是会议主要内容之一。此外,以遗传算法的理论基础为中心的学术会议还有Foundations of Genetic Algorithms,该会也是从1990年开始隔年召开一次。这些国际会议论文,集中反映了遗传算法近些年来的最新发展和动向。
1991年,L.Davis编辑出版了《遗传算法手册》(Handbook of Genetic Algorithms),其中包括了遗传算法在工程技术和社会生活中的大量应用实例。
1992年,Koza发表了他的专着《遗传程序设计:基于自然选择法则的计算机程序设计》”。1994年,他又出版了《遗传程序设计,第二册:可重用程序的自动发现》深化了遗传程序设计的研究,使程序设计自动化展现了新局面。有关遗传算法的学术论文也不断在《Artificial Intelligence》、《Machine Learning》、《Information science》、《Parallel Computing》、《Genetic Programming and Evoluable Machines》\《IEEE Transactions on Neural Networks》,《IEEE Transactions on Signal Processing》等杂志上发表。1993年,MIT出版社创刊了新杂志《Evolutionary Computation》。1997年,IEEE又创刊了《Transactions on Evolutionary Computation》。《Advanced Computational Intelligence》杂志即将发刊,由模糊集合创始人L.A.Zadeh教授为名誉主编。目前,关于遗传算法研究的热潮仍在持续,越来越多的从事不同领域的研究人员已经或正在置身于有关遗传算法的研究或应用之中。