导航:首页 > 源码编译 > 最近邻聚类算法

最近邻聚类算法

发布时间:2024-02-08 14:07:43

A. 常见的几种聚类方法

作为无监督学习的一个重要方法,聚类的思想就是把属性相似的样本归到一类。对于每一个数据点,我们可以把它归到一个特定的类,同时每个类之间的所有数据点在某种程度上有着共性,比如空间位置接近等特性。多用于数据挖掘、数据分析等一些领域。

下面简单介绍一下几种比较常见的聚类算法

K-means聚类方法大家应该都听说过,在各种机器学习书籍教程中也是无监督学习部分非常经典的例子。其核心主要为两个部分:其一是K,K在这里代表着类的数目,我们要把数据聚为多少类。其二是means,表示在每一次计算聚类中心的时候采取的是计算平均值。

我们假设样本总数为n,K-means聚类法可以简单表示为一下几个步骤:

1. 在样本中随机选取K个点,作为每一类的中心点。

2. 计算剩下 n-K 个样本点到每个聚类中心的距离(距离有很多种,假设这里采用欧式距离)。对于每一个样本点,将它归到和他距离最近的聚类中心所属的类。

3. 重新计算每个聚类中心的位置:步骤 2 中得到的结果是 n 个点都有自己所属的类,将每一个类内的所有点取平均值(这里假设是二维空间,即对 x 和 y 坐标分别取平均),计算出新的聚类中心。

4. 重复步骤 2 和 3 的操作,直到所有的聚类中心不再改变。

分析一下,算法本身的思想并不难。但是K值如何选择就见仁见智了,这里可以引入类内距离 J,每一类都会对应一个 J 值,其计算就是把类内所有点之间的距离累加起来。我们肯定希望 J 越小越好,因为小的类内间距代表这一类样本的相似程度更高(离得更近)。

如果 K 很小,则聚类可能不彻底,即隔着很远的两波点也被聚为一类,会使 J 变得很大;相反的,过大的 K 虽然会降低类内间距 J ,但有时候分得过细会对数据的泛化性造成损害,没有必要弄这么多类。因此 K 的选择应该是具体问题具体分析。

还有一个问题就是初始聚类中心的选择。不当的初始化会给算法的收敛带来更多的计算开销。试想一下,如果一开始把离得很近的 K 个点都设为聚类中心,那么算法的迭代次数会更多一些。

HAC也是一种比较经典的聚类方法,其主要思想是先把每一个样本点归为一类,再通过计算类间的距离,来对最相似或者距离最近的类进行归并,合成位一个新的类。反复循环,直到满足特定的迭代条件即可。

HAC的核心思想主要分为如下几个步骤:

1. 将每个样本点都视作一类,一共有n个类。

2. 计算所有类之间两两的类间距离(类间距离计算方式多种多样,可以取最近、最远、找重心等等,这里不做详述),然后把距离最近的两个类进行合并,组成一个新的更大的类。

3. 重复步骤 2 中的操作,直到达到特定的迭代条件(例如当前类的数目是初始时的 10% ,即 90% 的类都得到了合并;最小的类间距离大于预先设定的阈值等等),算法结束。

和K-means算法中的 K 值选取一样,HAC中如何选择迭代的终止条件也是一个比较复杂的问题,需要根据一定的经验,并且具体问题具体分析。

这种方法的核心思想是先计算出聚类中心,再把所有的样本点按照就近原则,归到离自身最近的聚类中心所对应的类。最大最小是指在所有的最小距离中选取最大的。其主要的算法步骤如下:

1. 随机选择一个点,作为第一个类的聚类中心 Z1。

2. 选择与步骤 1 中距离最远的样本点,作为第二个类的聚类中心 Z2。

3. 逐个计算每个点到所有聚类中心的距离,并把所有的最短的距离记录下来。

4. 在这些最短距离中挑选最大的值,如果这个最大值大于 ,其中 ,那么将这个最大距离所对应的另一个样本点作为新的聚类中心;否则整个算法结束。

5. 重复步骤 3 和 4 的操作,直到 4 中不再出现新的聚类中心。

6. 将所有的样本归到与他自身最近的聚类中心。

参考:

https://www.jianshu.com/p/4f032dccdcef

https://www.jianshu.com/p/bbac132b15a5

https://blog.csdn.net/u011511601/article/details/81951939

B. 分类和聚类的区别及各自的常见算法

1、分类和聚类的区别:
Classification (分类),对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),
Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).
2、常见的分类与聚类算法
所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearestneighbor,kNN),模糊分类法等等。
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
而K均值(K-mensclustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K中心点(K-MEDOIDS)算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法;基于模型的方法)。

C. 八:聚类算法K-means(20191223-29)

学习内容:无监督聚类算法K-Means

k-means:模型原理、收敛过程、超参数的选择

聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

不同的簇类型: 聚类旨在发现有用的对象簇,在现实中我们用到很多的簇的类型,使用不同的簇类型划分数据的结果是不同的。

基于原型的: 簇是对象的集合,其中每个对象到定义该簇的 原型 的距离比其他簇的原型距离更近,如(b)所示的原型即为中心点,在一个簇中的数据到其中心点比到另一个簇的中心点更近。这是一种常见的 基于中心的簇 ,最常用的K-Means就是这样的一种簇类型。 这样的簇趋向于球形。

基于密度的 :簇是对象的密度区域,(d)所示的是基于密度的簇,当簇不规则或相互盘绕,并且有早上和离群点事,常常使用基于密度的簇定义。

关于更多的簇介绍参考《数据挖掘导论》。

基本的聚类分析算法

     1. K均值: 基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇。

     2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝试单个、包含所有点的簇。

     3. DBSCAN: 一种基于密度的划分距离的算法,簇的个数有算法自动的确定,低密度中的点被视为噪声而忽略,因此其不产生完全聚类。

不同的距离量度会对距离的结果产生影响,常见的距离量度如下所示:

优点:易于实现 

缺点:可能收敛于局部最小值,在大规模数据收敛慢

算法思想:

选择K个点作为初始质心 

repeat

    将每个点指派到最近的质心,形成K个簇 

    重新计算每个簇的质心  

until 簇不发生变化或达到最大迭代次数

这里的“重新计算每个簇的质心”,是根据目标函数来计算的,因此在开始时要考虑 距离度量和目标函数。

考虑欧几里得距离的数据,使用 误差平方和(Sum of the Squared Error,SSE) 作为聚类的目标函数,两次运行K均值产生的两个不同的簇集,使用SSE最小的那个。

k表示k个聚类中心,ci表示第几个中心,dist表示的是欧几里得距离。 

这里有一个问题就是为什么,我们更新质心是让所有的点的平均值,这里就是SSE所决定的。

k均值算法非常简单且使用广泛,但是其有主要的两个缺陷:

1. K值需要预先给定 ,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用户的交往圈这样的场景就完全的没办法用K-Means进行。对于可以确定K值不会太大但不明确精确的K值的场景,可以进行迭代运算,然后找出Cost Function最小时所对应的K值,这个值往往能较好的描述有多少个簇类。

2. K-Means算法对初始选取的聚类中心点是敏感的 ,不同的随机种子点得到的聚类结果完全不同

3. K均值算法并不是很所有的数据类型。 它不能处理非球形簇、不同尺寸和不同密度的簇,银冠指定足够大的簇的个数是他通常可以发现纯子簇。

4. 对离群点的数据进行聚类时,K均值也有问题 ,这种情况下,离群点检测和删除有很大的帮助。

下面对初始质心的选择进行讨论:

当初始质心是随机的进行初始化的时候,K均值的每次运行将会产生不同的SSE,而且随机的选择初始质心结果可能很糟糕,可能只能得到局部的最优解,而无法得到全局的最优解。

多次运行,每次使用一组不同的随机初始质心,然后选择一个具有最小的SSE的簇集。该策略非常的简单,但是效果可能不是很好,这取决于数据集合寻找的簇的个数。

关于更多,参考《数据挖掘导论》

为了克服K-Means算法收敛于局部最小值的问题,提出了一种 二分K-均值(bisecting K-means)

将所有的点看成是一个簇

当簇小于数目k时

    对于每一个簇

        计算总误差

        在给定的簇上进行K-均值聚类,k值为2        计算将该簇划分成两个簇后总误差

    选择是的误差最小的那个簇进行划分

在原始的K-means算法中,每一次的划分所有的样本都要参与运算,如果数据量非常大的话,这个时间是非常高的,因此有了一种分批处理的改进算法。

使用Mini Batch(分批处理)的方法对数据点之间的距离进行计算。

Mini Batch的好处:不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。n 由于计算样本量少,所以会相应的减少运行时间n 但另一方面抽样也必然会带来准确度的下降。

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集成为一个“簇”。通过这样的划分,每个簇可能对应于一些潜在的概念(也就是类别);需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名。

聚类是无监督的学习算法,分类是有监督的学习算法。所谓有监督就是有已知标签的训练集(也就是说提前知道训练集里的数据属于哪个类别),机器学习算法在训练集上学习到相应的参数,构建模型,然后应用到测试集上。而聚类算法是没有标签的,聚类的时候,需要实现的目标只是把相似的东西聚到一起。

聚类的目的是把相似的样本聚到一起,而将不相似的样本分开,类似于“物以类聚”,很直观的想法是同一个簇中的相似度要尽可能高,而簇与簇之间的相似度要尽可能的低。

性能度量大概可分为两类: 一是外部指标, 二是内部指标 。

外部指标:将聚类结果和某个“参考模型”进行比较。

内部指标:不利用任何参考模型,直接考察聚类结果。

对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大

初学者会很容易就把K-Means和KNN搞混,其实两者的差别还是很大的。

K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。

当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

优点:

简单, 易于理解和实现 ;收敛快,一般仅需5-10次迭代即可,高效

缺点:

    1,对K值得选取把握不同对结果有很大的不同

    2,对于初始点的选取敏感,不同的随机初始点得到的聚类结果可能完全不同

    3,对于不是凸的数据集比较难收敛

    4,对噪点过于敏感,因为算法是根据基于均值的

    5,结果不一定是全局最优,只能保证局部最优

    6,对球形簇的分组效果较好,对非球型簇、不同尺寸、不同密度的簇分组效果不好。

K-means算法简单理解,易于实现(局部最优),却会有对初始点、噪声点敏感等问题;还容易和监督学习的分类算法KNN混淆。

参考阅读:

1.《 深入理解K-Means聚类算法 》

2.《 K-Means 》

D. 聚类算法--KMeans

    与分类、序列标注等任务不同,聚类是在事先并不知道任何样本标签的情况下,通过数据之间的内在关系把样本划分为若干类别,使得同类别样本之间的相似度高,不同类别之间的样本相似度低(即增大类内聚,减少类间距)。    

    聚类属于非监督学习,K均值聚类是最基础常用的聚类算法。它的基本思想是,通过迭代寻找K个簇(Cluster)的一种划分方案,使得聚类结果对应的损失函数最小。其中,损失函数可以定义为各个样本距离所属簇中心点的误差平方和。

其中 代表第i个样本, 是 所属的簇,  代表簇对应的中心点,M是样本总数。

相关概念:

    K值: 要得到的簇的个数。

    质心: 每个簇的均值向量。即向量各维取平均即可。

    距离量度: 常用欧几里得距离和余弦相似度(先标准化)。

    KMeans的主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。

    KMeans的核心目标是将给定的数据集划分成K个簇(K是超餐),并给出每个样本数据对应的中心点。具体步骤非常简单:

    (1)首先确定一个K值,即我们希望将数据集经过聚类得到k个集合。

    (2)从数据集中随机选择K个数据点作为质心。

    (3)对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到哪个质心所属的集合。

    (4)把所有数据归好集合后,一共有K个集合。然后重新计算每个集合的质心。

    (5)如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终止。

    (6)如果新质心和原质心距离变化很大,需要迭代3-5步骤。

KMeans最核心的部分是先固定中心点,调整每个样本所属的类别来减少J;再固定每个样本的类别,调整中心点继续减小J。两个过程交替循环,J单调递减直到极小值,中心点和样本划分的类别同时收敛。

KMeans的优点 :

 高效可伸缩,计算复杂度为O(NKt)接近于线性(N是数据量,K是聚类总数,t是迭代轮数)。

 收敛速度快,原理相对通俗易懂,可解释性强。

当结果簇是密集的,而簇与簇之间区别是明显时,他的效果较好。主要需要调参的参数仅仅是簇数K。

缺点 :

 受初始值和异常点影响,聚类结果可能不是全局最优而是局部最优。K-Means算法对初始选取的质心点是敏感的,不同的随机种子点得到的聚类结果完全不同,对结果影响很大。

 K是超参数,一般需要按经验选择。

 对噪音和异常点比较的敏感,用来检测异常值。

 只能发现球状的簇。在K-Means中,我们用单个点对cluster进行建模,这实际上假设各个cluster的数据是呈高维球型分布的,但是在生活中出现这种情况的概率并不算高。例如,每一个cluster是一个一个的长条状的,K-Means的则根本识别不出来这种类别( 这种情况可以用GMM )。实际上,K-Means是在做凸优化,因此处理不了非凸的分布。

根据以上特点,我们可以从下面几个角度对算法做调优。

(1)数据预处理:归一化和异常点过滤

    KMeans本质是一种基于欧式距离度量的数据划分方法,均值和方差大的维度将对数据的聚类结果产生决定性影响 。所以在聚类前对数据( 具体的说是每一个维度的特征 )做归一化和单位统一至关重要。此外,异常值会对均值计算产生较大影响,导致 中心偏移 ,这些噪声点最好能提前过滤。

(2)合理选择K值

    K值的选择一般基于实验和多次实验结果。例如采用 手肘法 ,尝试不同K值并将对应的损失函数画成折线。手肘法认为图上的 拐点就是K的最佳值 (k=3)。

为了将寻找最佳K值的过程自动化,研究人员提出了Gap Statistic方法。不需要人们用肉眼判断,只需要找到最大的Gap Statistic对应的K即可。

       损失函数记为  ,当分为K类时,Gap Statistic定义为:  。 是 的期望 ,一般由蒙特卡洛模拟产生。我们在样本所在的区域内按照均匀分布随机地产生和原始样本数一样多的随机样本,并对这个随机样本做KMeans,得到一个 ,重复多次就可以计算出 的近似值。

       的物理含义是随机样本的损失与实际样本的损失之差。Gap越大说明聚类的效果越好 。一种极端情况是,随着K的变化 几乎维持一条直线保持不变。说明这些样本间没有明显的类别关系,数据分布几乎和均匀分布一致,近似随机。此时做聚类没有意义。

(3)改进初始值的选择

    之前我们采用随机选择K个中心的做法,可能导致不同的中心点距离很近,就需要更多的迭代次数才能收敛。如果在选择初始中心点时能 让不同的中心尽可能远离 ,效果往往更好。这类算法中,以K-Means++算法最具影响力。

(4)采用核函数

    主要思想是通过一个非线性映射,将输入空间中的数据点映射到高维的特征空间中,并在新的空间进行聚类。非线性映射增加了数据点线性可分的概率(与SVM中使用核函数思想类似)对于非凸的数据分布可以达到更为准确的聚类结果。

 (1)初始的K个质心怎么选?

    最常用的方法是随机选,初始质心的选取对最终聚类结果有影响,因此算法一定要多执行几次,哪个结果更合理,就用哪个结果。当然也有一些优化的方法,第一种是选择彼此距离最远的点,具体来说就是先选第一个点,然后选离第一个点最远的当第二个点,然后选第三个点,第三个点到第一、第二两点的距离之和最小,以此类推。第二种是先根据其他聚类算法(如层次聚类)得到聚类结果,从结果中每个分类选一个点

(2)关于离群值?

    离群值就是远离整体的,非常异常、非常特殊的数据点,在聚类之前应该将这些"极大""极小"之类的离群数据都去掉,否则会对于聚类的结果有影响。但是,离散值往往自身就很有分析的价值,可以把离群值单独作为一类来分析。

(3)单位要一致!

(4)标准化

    数据中X整体都比较小,比如都是1到10之间的数,Y很大,比如都是1000以上的数,那么在计算距离的时候Y起到的作用就比X大很多,X对于距离的影响几乎可以忽略,这也有问题。因此,如果K-Means聚类中选择欧几里得距离计算距离,数据集又出现了上面所述的情况,就一定要进行数据的标准化(normalization),即将数据按比例缩放,使之落入一个小的特定区间。

    K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出 。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的K个点,用这最近的K个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到K个类别的最佳质心,从而决定样本的簇类别。当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。 两周都利用了最近邻的思想 。

E. 分类和聚类的区别及各自的常见算法

1、分类和聚类的区别:
Classification (分类),对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),
Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).
2、常见的分类与聚类算法
所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearestneighbor,kNN),模糊分类法等等。
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
而K均值(K-mensclustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K中心点(K-MEDOIDS)算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法;基于模型的方法)。

F. 机器学习中算法的优缺点之最近邻算法

机器学习中有个算法是十分重要的,那就是最近邻算法,这种算法被大家称为KNN。我们在学习机器学习知识的时候一定要学习这种算法,其实不管是什么算法都是有自己的优缺点的,KNN算法也不例外,在这篇文章中我们就详细的给大家介绍一下KNN算法的优缺点,大家一定要好好学起来哟。
说到KNN算法我们有必要说一下KNN算法的主要过程,KNN算法的主要过程有四种,第一就是计算训练样本和测试样本中每个样本点的距离,第二个步骤就是对上面所有的距离值进行排序(升序)。第三个步骤就是选前k个最小距离的样本。第四个步骤就是根据这k个样本的标签进行投票,得到最后的分类类别。
那么大家是否知道如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一般来说,一个较好的K值可通过各种启发式技术来获取,比如说交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
那么KNN算法的优点是什么呢?KNN算法的优点具体体现在六点,第一就是对数据没有假设,准确度高,对outlier不敏感。第二就是KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练。第三就是KNN理论简单,容易实现。第四就是理论成熟,思想简单,既可以用来做分类也可以用来做回归。第五就是可用于非线性分类。第六就是训练时间复杂度为O(n)。由此可见,KNN算法的优点是有很多的。
那么KNN算法的缺点是什么呢?这种算法的缺点具体体现在六点,第一就是样本不平衡时,预测偏差比较大。第二就是KNN每一次分类都会重新进行一次全局运算。第三就是k值大小的选择没有理论选择最优,往往是结合K-折交叉验证得到最优k值选择。第四就是样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)效果差。第五就是需要大量内存。第六就是对于样本容量大的数据集计算量比较大。
正是由于这些优点和缺点,KNN算法应用领域比较广泛,在文本分类、模式识别、聚类分析,多分类领域中处处有KNN算法的身影。
在这篇文章中我们给大家介绍了很多关于KNN算法的相关知识,通过对这些知识的理解相信大家已经知道该算法的特点了吧,希望这篇文章能够帮助大家更好的理解KNN算法。

G. K-means 与KNN 聚类算法

        K-means 算法属于聚类算法的一种。聚类算法就是把相似的对象通过静态分类方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性。聚类算法的任务是将数据集划分为多个集群。在相同集群中的数据彼此会比不同集群的数据相似。通常来说,聚类算法的目标就是通过相似特征将数据分组并分配进不同的集群中。

K-means 聚类算法是一种非监督学习算法,被用于非标签数据(data without defined categories or groups)。该算法使用迭代细化来产生最终结果。算法输入的是集群的数量 K 和数据集。数据集是每个数据点的一组功能。  算法从 Κ 质心的初始估计开始,其可以随机生成或从数据集中随机选择 。然后算法在下面两个步骤之间迭代:

每个质心定义一个集群。在此步骤中,基于平方欧氏距离将每个数据点分配到其最近的质心。更正式一点, ci  属于质心集合  C  ,然后每个数据点  x  基于下面的公式被分配到一个集群中。

在此步骤中,重新计算质心。这是通过获取分配给该质心集群的所有数据点的平均值来完成的。公式如下:

K-means 算法在步骤 1 和步骤 2 之间迭代,直到满足停止条件(即,没有数据点改变集群,距离的总和最小化,或者达到一些最大迭代次数)。

上述算法找到特定预选 K 值和数据集标签。为了找到数据中的集群数,用户需要针对一系列 K 值运行 K-means 聚类算法并比较结果。通常,没有用于确定 K 的精确值的方法,但是可以使用以下技术获得准确的估计。

Elbow point 拐点方法

通常用于比较不同 K 值的结果的度量之一是数据点与其聚类质心之间的平均距离。由于增加集群的数量将总是减少到数据点的距离,因此当 K 与数据点的数量相同时,增加 K 将总是减小该度量,达到零的极值。因此,该指标不能用作唯一目标。相反,绘制了作为 K 到质心的平均距离的函数,并且可以使用减小率急剧变化的“拐点”来粗略地确定 K 。

DBI(Davies-Bouldin Index)

DBI 是一种评估度量的聚类算法的指标,通常用于评估 K-means 算法中 k 的取值。简单的理解就是:DBI 是聚类内的距离与聚类外的距离的比值。所以,DBI 的数值越小,表示分散程度越低,聚类效果越好。

还存在许多用于验证 K 的其他技术,包括交叉验证,信息标准,信息理论跳跃方法,轮廓方法和 G 均值算法等等。

需要提前确定 K 的选值或者需尝试很多 K 的取值

数据必须是数字的,可以通过欧氏距离比较

对特殊数据敏感,很容易受特殊数据影响

对初始选择的质心/中心(centers)敏感

之前介绍了  KNN (K 邻近)算法 ,感觉这两个算法的名字很接近,下面做一个简略对比。

K-means  :

聚类算法

用于非监督学习

使用无标签数据

需要训练过程

K-NN :

分类算法

用于监督学习

使用标签数据

没有明显的训练过程

邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。Cover和Hart在1968年提出了最初的邻近算法。KNN是一种分类(classification)算法,它输入基于实例的学习(instance-based learning),属于懒惰学习(lazy learning)即KNN没有显式的学习过程,也就是说没有训练阶段,数据集事先已有了分类和特征值,待收到新样本后直接进行处理。与急切学习(eager learning)相对应。

KNN是通过测量不同特征值之间的距离进行分类。 

思路是:如果一个样本在特征空间中的k个最邻近的样本中的大多数属于某一个类别,则该样本也划分为这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

提到KNN,网上最常见的就是下面这个图,可以帮助大家理解。

我们要确定绿点属于哪个颜色(红色或者蓝色),要做的就是选出距离目标点距离最近的k个点,看这k个点的大多数颜色是什么颜色。当k取3的时候,我们可以看出距离最近的三个,分别是红色、红色、蓝色,因此得到目标点为红色。

算法的描述:

1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类

二、关于 K 的取值

K:临近数,即在预测目标点时取几个临近的点来预测。

K值得选取非常重要,因为:

如果当K的取值过小时,一旦有噪声得成分存在们将会对预测产生比较大影响,例如取K值为1时,一旦最近的一个点是噪声,那么就会出现偏差,K值的减小就意味着整体模型变得复杂,容易发生过拟合;

如果K的值取的过大时,就相当于用较大邻域中的训练实例进行预测,学习的近似误差会增大。这时与输入目标点较远实例也会对预测起作用,使预测发生错误。K值的增大就意味着整体的模型变得简单;

如果K==N的时候,那么就是取全部的实例,即为取实例中某分类下最多的点,就对预测没有什么实际的意义了;

K的取值尽量要取奇数,以保证在计算结果最后会产生一个较多的类别,如果取偶数可能会产生相等的情况,不利于预测。

K的取法:

 常用的方法是从k=1开始,使用检验集估计分类器的误差率。重复该过程,每次K增值1,允许增加一个近邻。选取产生最小误差率的K。

一般k的取值不超过20,上限是n的开方,随着数据集的增大,K的值也要增大。

三、关于距离的选取

距离就是平面上两个点的直线距离

关于距离的度量方法,常用的有:欧几里得距离、余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)或其他。

Euclidean Distance 定义:

两个点或元组P1=(x1,y1)和P2=(x2,y2)的欧几里得距离是

距离公式为:(多个维度的时候是多个维度各自求差)

四、总结

KNN算法是最简单有效的分类算法,简单且容易实现。当训练数据集很大时,需要大量的存储空间,而且需要计算待测样本和训练数据集中所有样本的距离,所以非常耗时

KNN对于随机分布的数据集分类效果较差,对于类内间距小,类间间距大的数据集分类效果好,而且对于边界不规则的数据效果好于线性分类器。

KNN对于样本不均衡的数据效果不好,需要进行改进。改进的方法时对k个近邻数据赋予权重,比如距离测试样本越近,权重越大。

KNN很耗时,时间复杂度为O(n),一般适用于样本数较少的数据集,当数据量大时,可以将数据以树的形式呈现,能提高速度,常用的有kd-tree和ball-tree。

H. 用于数据挖掘的聚类算法有哪些,各有何优势

聚类方法的分类,主要分为层次化聚类算法,划分式聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法等。

而衡量聚类算法优劣的标准主要是这几个方面:处理大的数据集的能力;处理任意形状,包括有间隙的嵌套的数据的能力;算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序;处理数据噪声的能力;是否需要预先知道聚类个数,是否需要用户给出领域知识;算法处理有很多属性数据的能力,也就是对数据维数是否敏感。

.聚类算法主要有两种算法,一种是自下而上法(bottom-up),一种是自上而下法(top-down)。这两种路径本质上各有优势,主要看实际应用的时候要根据数据适用于哪一种,Hierarchical methods中比较新的算法有BIRCH主要是在数据体量很大的时候使用;ROCK优势在于异常数据抗干扰性强……

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

阅读全文

与最近邻聚类算法相关的资料

热点内容
论语新解pdf 浏览:579
dnf深渊算法 浏览:335
app画面半截怎么办 浏览:611
苹果怎么设置app退出仍然有声音 浏览:433
javatif转jpg 浏览:165
java设置按钮的位置 浏览:686
互联网商业模式pdf 浏览:440
cmdcopycon命令 浏览:933
pdf火车 浏览:77
幻世九歌怎么选服务器 浏览:163
ubuntu反编译工具使用方法 浏览:910
stc20脚单片机 浏览:352
pdf吉他独奏 浏览:484
phpsort排序 浏览:917
三种条件编译指令 浏览:945
怎么知道app扣的啥费用 浏览:320
没有服务器地址测试微信接口 浏览:392
51单片机报警器 浏览:431
python任意范围猜数字游戏 浏览:567
程序员打电话搞笑视频 浏览:129