导航:首页 > 源码编译 > 骨干粒子群算法的优点缺点

骨干粒子群算法的优点缺点

发布时间:2024-02-27 01:08:09

⑴ 粒子群算法的优点

第一,算法规则简单,容易实现,在工程应用中比较广;第二,收敛速度快,且有很多措施可以避免陷入局部最优;第三,可调参数少,并且对于参数的选择已经有成熟的理论研究成果,见Eberhart的论文。

⑵ 模拟退火算法和粒子群算法的优缺点有那些具体点,谢啦

退火敬孝优历携点:计算过程简单,通用,鲁棒性强,适用于并行处理,可用亮烂稿于求解复杂的非线性优化问题。缺点:收敛速度慢,执行时间长,算法性能与初始值有关及参数敏感等缺点。
PSO:演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦

⑶ 粒子群算法(一):粒子群算法概述

  本系列文章主要针对粒子群算法进行介绍和运用,并给出粒子群算法的经典案例,从而进一步加深对粒子群算法的了解与运用(预计在一周内完成本系列文章)。主要包括四个部分:

  粒子群算法也称粒子群优化算法(Particle Swarm Optimization, PSO),属于群体智能优化算法,是近年来发展起来的一种新的进化算法(Evolutionary Algorithm, EA)。 群体智能优化算法主要模拟了昆虫、兽群、鸟群和鱼群的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断地改变搜索的方向。 群体智能优化算法的突出特点就是利用了种群的群体智慧进行协同搜索,从而在解空间内找到最优解。
  PSO 算法和模拟退火算法相比,也是 从随机解出发,通过迭代寻找最优解 。它是通过适应度来评价解的品质,但比遗传算法规则更为简单,没有遗传算法的“交叉”和“变异”,它通过追随当前搜索到的最大适应度来寻找全局最优。这种算法以其 容易实现、精度高、收敛快 等优点引起了学术界的重视,并在解决实际问题中展示了其优越性。

  在粒子群算法中,每个优化问题的解被看作搜索空间的一只鸟,即“粒子”。算法开始时首先生成初始解,即在可行解空间中随机初始化 粒子组成的种群 ,其中每个粒子所处的位置 ,都表示问题的一个解,并依据目标函数计算搜索新解。在每次迭代时,粒子将跟踪两个“极值”来更新自己, 一个是粒子本身搜索到的最好解 ,另一个是整个种群目前搜索到的最优解 。 此外每个粒子都有一个速度 ,当两个最优解都找到后,每个粒子根据如下迭代式更新:

  其中参数 称为是 PSO 的 惯性权重(inertia weight) ,它的取值介于[0,1]区间;参数 和 称为是 学习因子(learn factor) ;而 和 为介于[0,1]之间的随机概率值。
  实践证明没有绝对最优的参数,针对不同的问题选取合适的参数才能获得更好的收敛速度和鲁棒性,一般情况下 , 取 1.4961 ,而 采用 自适应的取值方法 ,即一开始令 , 使得 PSO 全局优化能力较强 ;随着迭代的深入,递减至 , 从而使得PSO具有较强的局部优化能力

  参数 之所以被称之为惯性权重,是因为 实际 反映了粒子过去的运动状态对当前行为的影响,就像是我们物理中提到的惯性。 如果 ,从前的运动状态很少能影响当前的行为,粒子的速度会很快的改变;相反, 较大,虽然会有很大的搜索空间,但是粒子很难改变其运动方向,很难向较优位置收敛,由于算法速度的因素,在实际运用中很少这样设置。也就是说, 较高的 设置促进全局搜索,较低的 设置促进快速的局部搜索。

⑷ 粒子群优化算法

姓名:杨晶晶  学号:21011210420  学院:通信工程学院

【嵌牛导读】

传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的,而粒子算法主要是解决一些多目标优化问题的(例如机械零件的多目标设计优化),其优点是容易实现,精度高,收敛速度快。

【嵌牛鼻子】粒子群算法的概念、公式、调参以及与遗传算法的比较。

【嵌牛提问】什么是粒子群算法?它的计算流程是什么?与遗传算法相比呢?

【嵌牛正文】

1. 概念

        粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation),源于对鸟群捕食的行为研究。

        粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。

        PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

2. 算法

2.1 问题抽象

        鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子i在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值),这个可以看作是粒子同伴的经验。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

2.2 更新规则

      PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

      公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。

      以上面两个公式为基础,形成了PSO的标准形式。

      公式(2)和 公式(3)被视为标准PSO算法。

2.3 标准PSO算法流程

    标准PSO算法的流程:

    1)初始化一群微粒(群体规模为N),包括随机位置和速度;

    2)评价每个微粒的适应度;

    3)对每个微粒,将其适应值与其经过的最好位置pbest作比较,如果较好,则将其作为当前的最好位置pbest;

    4)对每个微粒,将其适应值与其经过的最好位置gbest作比较,如果较好,则将其作为当前的最好位置gbest;

    5)根据公式(2)、(3)调整微粒速度和位置;

    6)未达到结束条件则转第2)步。

        迭代终止条件根据具体问题一般选为最大迭代次数Gk或(和)微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

      公式(2)和(3)中pbest和gbest分别表示微粒群的局部和全局最优位置。

    当C1=0时,则粒子没有了认知能力,变为只有社会的模型(social-only):

被称为全局PSO算法。粒子有扩展搜索空间的能力,具有较快的收敛速度,但由于缺少局部搜索,对于复杂问题

比标准PSO 更易陷入局部最优。

    当C2=0时,则粒子之间没有社会信息,模型变为只有认知(cognition-only)模型:

      被称为局部PSO算法。由于个体之间没有信息的交流,整个群体相当于多个粒子进行盲目的随机搜索,收敛速度慢,因而得到最优解的可能性小。

2.4 参数分析

        参数:群体规模N,惯性因子 ,学习因子c1和c2,最大速度Vmax,最大迭代次数Gk。

        群体规模N:一般取20~40,对较难或特定类别的问题可以取到100~200。

        最大速度Vmax:决定当前位置与最好位置之间的区域的分辨率(或精度)。如果太快,则粒子有可能越过极小点;如果太慢,则粒子不能在局部极小点之外进行足够的探索,会陷入到局部极值区域内。这种限制可以达到防止计算溢出、决定问题空间搜索的粒度的目的。

        权重因子:包括惯性因子和学习因子c1和c2。使粒子保持着运动惯性,使其具有扩展搜索空间的趋势,有能力探索新的区域。c1和c2代表将每个粒子推向pbest和gbest位置的统计加速项的权值。较低的值允许粒子在被拉回之前可以在目标区域外徘徊,较高的值导致粒子突然地冲向或越过目标区域。

        参数设置:

        1)如果令c1=c2=0,粒子将一直以当前速度的飞行,直到边界。很难找到最优解。

        2)如果=0,则速度只取决于当前位置和历史最好位置,速度本身没有记忆性。假设一个粒子处在全局最好位置,它将保持静止,其他粒子则飞向它的最好位置和全局最好位置的加权中心。粒子将收缩到当前全局最好位置。在加上第一部分后,粒子有扩展搜索空间的趋势,这也使得的作用表现为针对不同的搜索问题,调整算法的全局和局部搜索能力的平衡。较大时,具有较强的全局搜索能力;较小时,具有较强的局部搜索能力。

        3)通常设c1=c2=2。Suganthan的实验表明:c1和c2为常数时可以得到较好的解,但不一定必须等于2。Clerc引入收敛因子(constriction factor) K来保证收敛性。

      通常取为4.1,则K=0.729.实验表明,与使用惯性权重的PSO算法相比,使用收敛因子的PSO有更快的收敛速度。其实只要恰当的选取和c1、c2,两种算法是一样的。因此使用收敛因子的PSO可以看作使用惯性权重PSO的特例。

        恰当的选取算法的参数值可以改善算法的性能。

3. PSO与其它算法的比较

3.1 遗传算法和PSO的比较

  1)共性:

  (1)都属于仿生算法。

  (2)都属于全局优化方法。

  (3)都属于随机搜索算法。

  (4)都隐含并行性。

  (5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。

  (6)对高维复杂问题,往往会遇到早熟收敛和收敛 性能差的缺点,都无法保证收敛到最优点。

    2)差异:   

    (1)PSO有记忆,好的解的知识所有粒子都保 存,而GA(Genetic Algorithm),以前的知识随着种群的改变被改变。

    (2)PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单共享项信息机制。而GA中,染色体之间相互共享信息,使得整个种群都向最优区域移动。

    (3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。

    (4)应用于人工神经网络(ANN)

    GA可以用来研究NN的三个方面:网络连接权重、网络结构、学习算法。优势在于可处理传统方法不能处理的问题,例如不可导的节点传递函数或没有梯度信息。

    GA缺点:在某些问题上性能不是特别好;网络权重的编码和遗传算子的选择有时较麻烦。

    已有利用PSO来进行神经网络训练。研究表明PSO是一种很有潜力的神经网络算法。速度较快且有较好的结果。且没有遗传算法碰到的问题。

⑸ 模拟退火算法和粒子群算法的优缺点有那些具体点,谢啦

他们有类似之处,但差别也不小。
蒙特卡洛算法是数值计算方法,原理是利用随机数来解决计算问题。与它对应的是确定性算法。也就是说该种算法属于随机算法,得到的解是近似解。
而遗传算法、粒子群、模拟退火虽然也是随机近似算法,但这三种都是仿生智能算法,且比蒙特卡洛算法要复杂,应用的领域也不太相同。
显然,蒙特卡洛算法很轻巧,求解问题更快速。

⑹ 分析标准粒子群算法的不足及改进的方法

一个以上的目标,以优化
相对传统的多目标优化方法在解决多目标问题,PSO具有很大的优势。首先,PSO算法和高效的搜索功能,有利于在这个意义上,多目标的最优解;其次,PSO代表了整个解决方案的人口集固有的并行性,同时搜索多个非劣解,所以容易搜索多个Pareto最佳的解决方案;此外,PSO通用的适合处理所有类型的目标函数和约束条件,PSO容易与传统相结合的方法,和然后提出了有效的方法来解决一个具体的问题。 PSO本身,为了更好地解决多目标优化问题,必须解决的问题的全局最优粒子和个人选择的最优粒子。为全局最优粒子的选择,一方面,该算法具有更好的收敛速度,另一方面帕累托边界分散体的溶液中。如果在最佳的单个颗粒的选择,需要较少的计算复杂性,并且是仅由较少数量的比较非
劣解更新。迄今为止,基于PSO的多目标优化,主要有以下
思路:
(1)向量法和加权方法。文献[20]的固定权重法,自适应权重法和向量评估方法的第一次,PSO解决MO问题。然而,对于一个给定的优化问题,权重的方法通常是很难获得一组合适的权重向量评价方法MO的问题是,往往无法得到满意的解决方案。
(2)基于Pareto方法。 [21]帕累托排序机制和PSO相结合,处理的问题,多目标优化,Pareto排序方法来选择一组的精英,和轮盘赌选择全局最优粒子。虽然轮盘赌选择机制,使所有的帕累托个人选择的概率是一样的,但实际上只有少数人的选择的概率就越大,因此不利于保持种群多样性;文献[22]通过引入在PSO帕累托竞争机制,选择全局最优粒子的颗粒知识基础。候选个人随机选自人口比较集进行比较,以确定非劣解,该算法的成功取决于比较集的大小的参数设置。如果这个参数是太小了,选择的过程,从人口的非劣效性个人可能是太小了,如果这个参数是太大,它可能会出现过早收敛。
(3)距离的方法。 [23],被分配的各个的当前的解决方案之间的距离的基础上Pa2reto的解决方案,其适应值,以便选择全局最优粒子。随着距离的方法需要被初始化潜在的解决方案,如果初始电位值太大,不同的解决方案,以适应不同的值并不显着。这将导致在选择压力太小或个别均匀分布,导致在PSO算法收敛速度非常慢。
(4)附近的“。文献[24]提出了动态邻域的选择策略,为优化目标的定义,目标,和其他所有的目标定义的目标附近,然后选择全局最优粒子的动态邻域的策略,但该方法更敏感的目标函数的优化目标选择和附近的排序。
(5)多组法。文献[25]的人口划分成多个子群,以及每个子群PSO算法,通过搜索Pareto最优解的各种子群之间的信息交流。然而,由于需要增加的粒子的数量增加的计算量。
(6)非排名的方法。 [26]使用非主导的排序选择全局最优的粒子。整个人口,粒子的个人最好成绩粒子和它的后代,有利于提供一个适当的选择压力,小生境技术,以增加种群多样性。比较所有粒子的个人最好成绩颗粒在整个人群遗传给后代,但是,由于其本身的性质是不利于人口的多样性,容易形成早熟。此外,文献[27]最大最小策略,博弈论引入PSO解决多MO。最大最小策略,以确定粒子的适应值,可以判断帕累托最优的解决方案,而不需要集群和小生境技术。
2约束优化
在最近几年也取得了一些进展,PSO算法在约束最优化。基于PSO-的约束优化工作分为两种类型:①罚函数法;②设计特定的进化操作或约束修正系数。 [28]采用罚函数法,采用非固定多段映射罚函数将约束的优化问题,然后利用PSO解决问题的转换后,模拟结果表明,该算法相对进化策略和遗传算法的优势,但罚函数的设计过于复杂,不利于解决;文献[29],一个可行的解决方案,保留策略处理约束,即,一方面要更新所有的颗粒的存储区域中到只保留可行的解决方案,在另一方面在初始化阶段的所有的颗粒从一个可行的解决方案的空间值?初始的可行的解决方案空间,然而,是难以确定的很多问题,文献[30 ]提出的多层信息共享策略粒子群与约束原则来处理,根据约束矩阵多层Pareto排序机制的微粒,从而一些微粒,以确定个人的搜索方向的其余。
3离散优化为离散优化解决方案空间是离散点的集合,而不是连续PSO解决离散优化问题,必须予以纠??正的速度和位置更新公式,或变形。基于PSO的离散优化可分为以下三类:
速度(1)的位置变化的概率。 [31]首先提出了离散二进制PSO。二进制粒子的位置编码器,Sigmoid函数,速度约束在[0,1],代表粒子的概率立场;法[32] [31]在文献
提高的地址更换安排。安排更换颗粒,速度是指根据两个粒子的相似性,以确定粒子的位置变化也引入突变操作,以防止陷入局部极小的最优粒子的概率。
(2)重新定义的PSO的操作。 [33]通过重新定义粒子的位置,速度,和他们的加法和减法乘法运算,提出了一种新的离散粒子群,并为解决旅行商问题。虽然该算法是有效的,但它提供了一种新的思维方式求解组合优化问题。
(3)连续PSO离散的情况下。 [34]采用连续PSO,解决分布式计算机任务的分配问题。于实数被转换为一个正整数,和符号的实数部分和小数部分的
分除去。结果表明,在溶液中的质量和速度的方法的算法是优于遗传算法。
4动态优化
在许多实际工程问题,优化环境是不确定的,或动态。因此,优化算法必须有能力与环境的动态变化做出相应的调整,以最佳的解决方案,该算法具有一定的鲁棒性。 [35]首次提出了PSO跟踪动态系统[36]提出了自适应PSO自动跟踪动态系统的变化,种群粒子检测方法和粒子重新初始化PSO系统变化的跟踪能力增强;文献[37]迅速变化的动态环境中,在粒子速度更新公式的变化条目的增加,消除了需要在环境中的变化来检测,可以跟踪环境处理。虽然该研究少得多,但不容质疑的,是一个重要的研究内容。

粒子群算法的MATLAB程序

初始化粒子群;

对于每个粒子
计算他们的身体健康;
如果(健身优于粒子的历史最好值)
历史最好的个人裨锡更新;

如果选择当前粒子群粒子;(当前的最优粒子比历史最好粒子组)
与目前最好的粒子更新PG组;对于每个粒子

更新粒子类型①速度;
更新的位置粒子类型②;

虽然还没有达到最大迭代次数,或不符合的最小误差。

阅读全文

与骨干粒子群算法的优点缺点相关的资料

热点内容
python数据分析实战pdf 浏览:983
u盘插入文件夹 浏览:916
华为amd云服务器 浏览:495
汉化编程卡是什么意思 浏览:126
python学习pdf 浏览:313
祝绪丹程序员那么可爱拍吻戏 浏览:198
asp源码会员消费系统 浏览:113
java反射设置 浏览:152
python一行文 浏览:439
排序算法优缺点 浏览:563
恶搞加密文件pdf 浏览:674
gif怎么压缩图片大小 浏览:217
命令选择当前不可用 浏览:158
欧几里得算法如何求逆元 浏览:506
男中学生上课解压神器 浏览:373
加密狗拔掉之后怎么办 浏览:27
云储存平台源码 浏览:847
解压文件苹果手机rar 浏览:149
centos开机命令行模式 浏览:697
遍历所有listpython 浏览:660