A. 2019-07-23 MPPT
mppt是什么?
Maximum Power Point Tracking,最大功率点跟踪,指对光伏方阵表面温度变化和太阳辐照度变化而产生的输出电压与电流的变化进行跟踪控制,使得阵列一直保持在最大输出工作状态,以获得最大功率输出的自动调整行为。
如何衡量MPPT效率
MPPT渗透率。
太阳能板的特性曲线
在当前的环境条件下,太阳能板的最大输出功率为曲线的峰值。这是太阳能板达到最大的能量转换效率。由于能量守恒,太阳能板获得的光能为其输出的电能加上发热量。因此需要通过控制太阳能板的工作电压或者工作电流,让太阳能板工作在最大功率点。这种算法叫最大功率点跟踪(Maximum Power Point Tracking)
MPPT-P&O算法
P&O中文名字是扰动-观察法。
从P-V曲线可见,可通过控制电压的方法让光伏电池达到最大功率点。算法的实现,依据了以下公式:
dp/>0:U=U+ U
dp/=0:U=Um
dp/<0:U=U- U
当dP>dU时,工作点在最大功率点左边,需要增加工作电压。
当dP<dU时,工作点在最大功率点右边,需要减少工作电压。
当dP=dU时,达到最大功率点。
以下两个流程图摘自《独立式光伏发电系统最大功率点跟踪算法研究_张淼》。
从P-V曲线可知,在最大功率点左边,斜率较小。改变固定的电压,功率改变较小。而最大功率点右边,斜率较大。因此可以算法上,在最大功率点左边,选择一个较大的电压步长;而在最大功率点右边,选择一个较小的电压步长。可加快跟踪效果。
综上所述,个人认为MPPT电路作为光伏电池的调节电路,其主要左右不是更改了太阳阵端的输出,而是更改了MPPT电路的输出。
光伏电池阵列与负载通过DC/DC 电路 连接,最大功率跟踪装置不断检测光伏阵列的电流电压变化,并根据其变化对DC/DC变换器的PWM驱动信号占空比进行调节。
对于线性电路来说,当负载 电阻 等于电源的内阻时,电源即有最大功率输出。虽然光伏电池和DC/DC转换电路都是强非线性的,然而在极短的时间内,可以认为是线性电路。
因此,只要调节DC-DC转换电路的等效电阻使它始终等于光伏电池的内阻,就可以实现光伏电池的最大输出,也就实现了光伏电池的MPPT。
MPPT的算法
目前,光伏阵列的最大功率点跟踪(MPPT)技术,国内外已有了一定的研究,发展出各种控制方法常,常用的有一下几种:恒电压跟踪法(ConstantVoltageTracking简称CVT)、干扰观察法(简称P&O)、增量电导法(IncrementalConctancemethod简称INC)、基于梯度变步长的电导增量法等等。(这些算法只能用在无遮挡的条件下)
1)单峰值功率输出的MPPT的算法
目前,在无遮挡条件下,光伏阵列的最大功率点跟踪(MPPT)的控制方法常用的有以下几种:
l恒电压跟踪法(ConstantVoltageTracking简称CVT)
l干扰观察法(简称P&O)
l增量电导法(IncrementalConctancemethod简称INC)
l基于梯度变步长的电导增量法,等等。
2)多峰值功率输出MPPT算法
普通的最大功率跟踪算法,如扰动观测发和电导增量法在一片云彩的遮挡下就有可能失效,不能实现真正意义的最大功率跟踪。目前,国际上也有人提出了多峰值的MPPT算法,主要包含如下三种:
结合常规算法的复合MPPT算法
Fibonacci法
短路 电流脉冲法
光伏逆变器MPPT技术对系统发电量影响
在光伏系统中,逆变器的成本不到5%,却是发电效率的决定性因素之一,当组件等 配件 完全一致时,选择不同的逆变器,系统的总发电量有5%到10%的差别,这个差异的主要原因就是逆变器造成的。而MPPT效率是决定光伏逆变器发电量关键的因素,其重要性甚至超过光伏逆变器本身的效率,MPPT的效率等于硬件效率乘以软件效率,硬件效率主要由采样电路的精度,MPPT电压范围,MPPT路数来决定的,软件效率主要由控制算法来决定的。
最大功率点跟踪(Maximum Power Point Tracking,简称MPPT)是光伏发电系统中的一项核心技术,它是指根据外界不同的环境温度、光照强度等特性来调节光伏阵列的输出功率,使得光伏阵列始终输出最大功率。
中国光伏市场的爆发,促进了光伏逆变器的发展,各种技术层出不穷。目前使用的有集中式逆变器,单级组串式逆变器,双级组串式逆变器,集散式逆变器,高频模块化逆变器,MPPT的技术也是多种多样。
1、MPPT采样电路精度
MPPT实现的方法有很多种,但不管用哪种方法,首先要 测量 组件功率的变化,再对变化做出反应。这其中最关键的 元器件 就是 电流传感器 ,它的测量精度和线性误差将直接决定硬件效率,电流传感器做得比较好的厂家有瑞士的LEM,美国的VAC,日本的田村等,有开环和闭环两种,开环的电流传感器一般是电压型,体积少,重量轻,无插入损耗,成本低,线性精度99%,总测量误差1%左右,闭环的电流传感器,频带范围宽,精度高,响应时间快,抗干扰能力强,线性精度99.9%,总测量误差0.4%。
天气剧烈变化时,使用闭环 传感器 有优势。
2、MPPT电压范围
逆变器的工作电压范围和逆变器的电气拓扑结构以及逆变器输出电压有关,组串式逆变器和集散式逆变器是双级电气拓扑结构,MPPT工作电压范围在250-850V之间,集中式逆变器是单级结构,输出电压有270V,315V,400V等规格,输入MPPT电压范围有450-850V,500-850V,570-850V等多种,还有一种单级结构的组串式逆变器,只有一级DC-AC逆变器,输出电压是400V,MPPT输入电压范畴是570-850V。从应用的角度来看,各有优势和缺点。
1)从逆变器角度上讲,输出电压越高的逆变器,相同功率等级,电流越低,效率也就越高。单级比双级结构简单,可靠性高,成本低,价格便宜。
2)从系统角度上讲,逆变器MPPT电压范围越宽,可以早启动,晚停机,发电时间长。
3)根据电压源串联原理,系统输出电压相加,电流不变。光伏组件串联后,输出电流是由最少的电池板来决定的,受到组件原材料,加工工艺,阴影,灰尘等影响,一块组件功率降低,这一串的组件功率都会降低,因此组件串联数目要尽量少,并联的数目尽量多,才能减少由于组件的一致性而带来的影响。
3、MPPT的路数
目前组串式逆变器,MPPT路数有1到5路不等,集中式逆变器一般是1路MPPT,集散式逆变器,把汇流箱和MPPT升压集成在一起,有多路MPPT,还有一种高频模块化逆变器,每一个模块有一路MPPT。
从解决失配的问题角度来说,MPPT数量越多越有利;从稳定性和效率上来说,MPPT的数量越少越好,因为MPPT数量越多系统成本越高,稳定性越差,损耗越多。因此需要结合实际地形需求选择合适的方案。从理论上讲,组件的不一致性要超过0.5%以上,才有使用的价值。
1)功能损耗:MPPT算法很多,有干扰观察法、增量电导法、电导增量法等等,不管是哪一种算法,都是通过持续不断改变直流电压,去判断阳光的强度变化,因此都会存在误差,比如说当电压实际正处于最佳工作点时,逆变器还是会尝试改变电压,来判断是不是最佳工作点,多一路MPPT,就会多一路损耗。
2)测量损耗:MPPT工作时,逆变器需要测量电流和电压。一般来说,电流越大,抗干扰能力就越大,误差就越少,2路MPPT比4路MPPT电流大1倍,误差就少一倍。如某公司50KW的逆变器,使用开环直流电流传感器HLSR20-P,电流为20A,误差为1%,当输入电流小于0.5A时,误差就经常发生,当输入电流小于0.2A时,就基本上不能工作了。
3)电路损耗:MPPT主电路有一个 电感 和一个 开关 管,在运行时也会产生损耗。一般来说,电流越大,电感量可以做得更小,损耗就越少。
下图是在两个不同的地方,选择不同MPPT逆变器,单极单路和双级多路,实际发电量的示意图,由图可以看出,在平地无遮挡光照好的地区,两种逆变器发电量相差不多,单极单路早晚发电时间短,要损失一部分电量,在由于本身损耗低效率高,当光照达到启动电压后,输出功率要比双级多路的要大,所以综合比较起来差不多。
在山地或者屋顶有遮挡光照条件一般的地区,双级多路MPPT的逆变器发电量高。这是因为在低电功率发电时间段时间较长,高功率发电时间较短。
总结:
逆变器MPPT技术的多样性,给电站设计带来了极大的便利。结合实际,科学设计,不同的地形,光照条件,选择不同的逆变器,降低电站成本,提高经济效益。山丘电站和屋顶电站,存在朝向不一致和局部遮挡的现象,且不同的山丘遮挡特性不一样,带来组件失配问题,建议选择多路MPPT,电压范围宽的双级结构的逆变器,可以增加早晚发电时间。平地无遮挡,光照条件好的地区,建议选择单路MPPT,单级结构的逆变器,可以提高系统可靠性,降低系统成本。
B. 安装光伏电站逆变器应该如何选择
假设是并网逆变器:并网光伏逆变器主要分高频变压器型、低频变压器型和无变压器型三大类,主要从安全行轿槐性和效率两个层面来考虑变压器类型。并网光伏逆变器选型时应考虑的方面有:(1)容量匹配设计:并网系统设计中要求电池阵列与所接逆变器的功率容量相匹配,一般的设计思路是:组件标称功率×组件串联数×组件并联数=电池阵列功率。在容量设计中,并网逆变器的最大输入功率应近似等于电池阵列功率,已实现逆变器资源的最大化利用。(2)MPP电压范围与电池组电压匹配:根据太阳能电池的输出特性,电池组件存在功率最大输出点,并网逆变器具有在特点输入电压范围内自动档友追踪最大功率点的功能,因此电池阵列的帆蔽输出电压应处于逆变器MPP电压范围以内。电池组件电压×组件串联数=电池阵列电压。一般的设计思路是电池阵列的标称电压近似等于并网逆变器MPP电压的中间值,这样可以达到MPPT的最佳效果。
C. 简述逆变器的选型
光伏并网逆变器的常见类型
目前我国光伏电站采用的逆变器结构主要有:集中式光伏逆变器系统、组串式光伏逆变器系统、集散式光伏逆变器系统以及微型逆变器等。下面简单介绍一下集中式逆变器和组串式逆变器的的特点(后期会陆续介绍其他类型的逆变器):
>>>>
1.1集中式光伏逆变器
集中式光伏逆变系统是大型光伏电站普遍采用的电能变换装置,也是目前最为成熟的技术方案悉李之一。集中式光伏逆变系统采用一路最大功率点跟踪(MPPT)输入,集中MPPT寻优、集中逆变输出,
集中式逆变器是将很多光伏组串经过汇流后连接到逆变器直流输入端,集中完成将直流电转换为交流电的设备。集中式逆变器通常使用单级两电平三相全桥拓扑结构,大功率IGBT和SVPWM调制算法,通过DSP控制IGBT发出两电平方波,通过LCL或LC滤波器滤波后输出满足标准要求的正弦波。
集中式逆变器常见的输出功率为500kW、630kW,以500kW集中式逆变器应用业绩最多,集中式逆变器转换效率通常>98.3%,中国效率>97.5%,每台逆变器具有1路MPPT,毁档MPPT电压跟踪范围为500V~850V,2台逆变器组成1MW方阵,通过一个双分裂绕组变压器升压后接入35kV中压电网。
目前国内还有最新的直流1500V集中式逆变器,单价功率1.25~3.125MW,采用逆变升压一体结构,组成2.5MW~6.4MW的发电系统,适合目前平价电站的建设。
>>>>
集中式逆变器的优点:
1、安装相对简单,更方便维护。
2、该逆变系统采用单级式控制方式,控制相对简洁,相关技术比较成熟,单位系统睁余迟造价低。
>>>>
集中式逆变器的缺点:
单台集中式光伏逆变器仅具备一路MPPT路数,针对光伏电池板组件之间存在的匹配偏差,无法做到对每一光伏电池板组串精确地跟踪控制,造成电池板利用效率降低。特别是山地电站的大规模涌现,其应用场景受地形限制,无法保证所有组串朝向、倾角按照最优方式配置,单路MPPT方案的集中式光伏逆变器很难满足现场应用要求。
>>>>
1.2组串式光伏逆变器
组串式光伏逆变系统最初是针对屋顶光伏等小型光伏发电系统设计的,可直接接入低压电网,不需要隔离变压器或升压变压器,特别适合于低压并网的分布式光伏发电。
为了更好地解决光伏电池板组件“失配”造成的发电量的损失,在大型光伏电站中也出现了以小功率组串式光伏逆变器组成的光伏逆变系统,通过对光伏电池板组件子方阵的分散MPPT优化,交流汇接并联后集中升压并网,从而较好的解决了大型光伏电站因光伏电池板组件“失配”导致的发电量损失。
组串式逆变器是基于模块化的概念,将光伏方阵中的每个光伏组串连接至指定逆变器的直流输入端,各自完成将直流电转换为交流电的设备。组串式逆变器通常使用两级三电平三相全桥拓扑结构,选用中小功率IGBT和SVPWM调制算法,通过DSP控制IGBT发出三电平方波,通过LCL或LC滤波器滤波后输出满足标准的正弦波。
组串式逆变器常见的输出功率为1~10kW、20kW~40kW、50kW~80kW,逆变器的最大转换效率为98%以上,中国效率高达98.4%以上,每台逆变器具有多路的MPPT,MPPT电压范围通常为200V~1000V(1~5kW小功率逆变器的MPPT范围一般是80V~500V,直接接入用户电网侧),通过交流汇流后经双绕组变压器接入35kV中压电网。
D. 光伏逆变器规格中含有1个MPPT或者含有多个MPPT有什么区别每个MPPT可以接多少串是什么意思谢谢!
光伏组件的MPPT跟踪,而在实际工程中,一个500kW的逆变器,往往要接80~90个光伏组串。
MPPT,即Maximum Power Point Tracking的简称,中文为“最大功率点跟踪”,即:逆变器根据外界不同的环境温度、光照强度等特性来调节光伏阵列的输出功率,使得光伏阵列始终输出最大功率。
假设MPPT还没开始跟踪,这时组件输出电压是500V,然后MPPT开始跟踪之后,就开始通过内部的电路结构调节回路上的电阻,以改变组件输出电压,同时改变输出电流,一直到输出功率最大(假设是550V最大),此后就不断得跟踪,这样一来也就是说在太阳辐射不变的情况下,组件在550V的输出电压情况,输出功率会比500V时要高,这就是MPPT的作用所在。
由于遮挡不一致、组件功率偏差等原因,不同的组串间必然存在输出功率偏差。因此,每个逆变器接入的光伏组串的输出特性曲线变得复杂,呈多极值点,如图所示。
光伏方阵的输出功率曲线出现了多个功率的峰值。如何找到图3中最高的那个点,就需要进行MPPT计算了!
如何对MPPT进行计算:
单峰值功率输出的MPPT的算法。
目前,在无遮挡条件下,光伏阵列的最大功率点跟踪(MPPT)的控制方法常用的有以下几种:
恒电压跟踪法(Constant Voltage Tracking 简称CVT)。
干扰观察法(Perturbation And Observation method简称P&O)。
增量电导法(Incremental Conctance method简称INC)。
E. 光伏发电收益怎样计算的
自发自用电价= 基础电价+0.37 +地方补贴(如果有),余电上网电价= 0.37 +地方补贴(如果有)+当地脱硫煤电价。
户用发电的价格基本在7元/瓦,含组件、逆变器、支架各种设备。100平米的屋顶,根据采用的组件容量 安装角度不同,安装容量有很大的区别,估计能安装3-10千瓦的规模,成本投入就是2.1-7万元左右。
光伏发电注意事项
一般在生产光伏组件时都会附上说明,严禁站在太阳能电池板的玻璃面上作业,避免玻璃破裂,造成伤害。
同时注意在白天或阳光下施工时,交大蓝天专业安装人员建议采用黑色的不透光的材料遮盖太阳能电池板,防止点击伤人,造成人身事故或引起火灾等。
F. 光伏发电配置
太阳能发电系统(离网户用型)配置方法我们有先进的生产检验设备和实力雄厚的研发团队、专业的质检团队和优秀的业务销售团队为你排忧解难!
一、控制器的配置算法控制器的电压跟逆变器电压要相同,跟太阳能板连接后的输出电压等级相同,然后就算电流;
电流的大小根据太阳能发电板的功率决定的,比如四个200W的太阳能板,不管怎么样接法,总功率是800W,假设连接后输出电压等级为24V,那电流就是800/24=33A,也就是要大于33A的充放电控制器,我们就可以选择24V/40A的充放电控制器;
强调:控制器的大小是由太阳能发电板决定的;也就是充放电控制器的功率(电压*电流)要大于或等于所有发电板的总功率;
二、逆变器的算法逆变器的大小是由负载决定的,也就是由后面所带的设备来决定的,但设备分为感性负载和阻性负载,感性负载是指电机,风机,水泵,空调等开机会动的设备,这些设备开机时会有4到7倍的冲击电流(变频启动的除外,变频启动的无影响),算这些设备时,至少要按4倍的功率来计算;阻性负载是指那些开启时没有或很小的冲击电流的,如电灯,电脑,显示器等;这些设备就按原功率计算就可以了;
逆变器的选择要至少比后端所带的设备放大后的最大功率还要大;比如带一个1KW的水泵和一台1KW的电脑,那水泵会有4倍以上的冲击,电脑不会,那就要最大功率有4+1=5KW,所以逆变器至少要6KW以上的;
三、电池的算法
电池的选择也是取决于后面带的设备功率大小和需要电池供电时间的长短;
功率是后面带的所有设备的功率总和,但不要计冲击,因为开机冲击只是很短的时间,对电池影响不大;
公式为:(总功率/直流电压)*时间=单节电池的容量;电池节数=直流电压/单节电池电压;
举例子:负载有一台1KW电机,一台1KW电脑,要应急供电2小时,那总功率就是2000W,如果直流电压是24V,单节电池电压是12V;
电池容量=(2000/24)*2=166,也就是要用180AH/12V的电池了;电池节数=24V/12V=2节;所以这个案子就要用180AH/12V的电池2节;
四、太阳能电池板的配置:
方案一:太阳能电池板只是给电池充电,这个就决定于电池的容量和电压了;
(举例子一:用的是100AH/12V的电池一节;按一天5个小时的足太阳计算,就必须要20A的充电电流,20A*12V=240W;也就是太阳能板必须要大于或等于12V/240W的太阳能电池板;)
方案二:用户希望在太阳能足够时,能直接太阳能电池板直接经过逆变器输出,那就必须太阳能电池板的功率大于等于负载功率;直流电压等级范围跟逆变器输入的直流电压等级相各个地方
G. 目前光伏并网发电设备中常用的MPPT(最大功率点)跟踪的方法有哪些
一般常用扰动观察法(P&O),导纳增量法(INCond)。
还有并联功率补偿法;结合常规算法的复合MPPT算法;电流扫描法;短路电流脉冲法;Fibonacci搜索法;基于状态空间的MPPT算法等。
详细内容可参考http://wenku..com/view/39cec41eb7360b4c2e3f6439.html