‘壹’ music算法的详细内容
MUSIC算法是空间谱估计测向理论的重要基石。算法原理 如下:
(1) 不管测向天线阵列形状如何,也不管入射来波入射角的维数如何,假定阵列由M个阵元组成,则阵列输出模型的矩阵形式都可以表示为:Y(t)=AX(t)+N(t)
其中,Y是观测到的阵列输出数据复向量;X是未知的空间信号复向量;N是阵列输出向量中的加性噪声;A是阵列的方向矩阵;此处,A矩阵表达式由图册表示。
MUSIC算法的处理任务就是设法估计出入射到阵列的空间信号的个数D以及空间信号源的强度及其来波方向。
(2) 在实际处理中,Y得到的数据是有限时间段内的有限次数的样本(也称快拍或快摄),在这段时间内,假定来波方向不发生变化,且噪声为与信号不相关的白噪声,则定义阵列输出信号的二阶矩:Ry。
(3) MUSIC算法的核心就是对Ry进行特征值分解,利用特征向量构建两个正交的子空间,即信号子空间和噪声子空间。对Ry进行特征分解,即是使得图册中的公式成立。
(4) U是非负定的厄米特矩阵,所以特征分解得到的特征值均为非负实数,有D个大的特征值和M-D个小的特征值,大特征值对应的特征向量组成的空间Us为信号子空间,小特征值对应的特征向量组成的空间Un为噪声子空间。
(5) 将噪声特征向量作为列向量,组成噪声特征矩阵 ,并张成M-D维的噪声子空间Un,噪声子空间与信号子空间正交。而Us的列空间向量恰与信号子空间重合,所以Us的列向量与噪声子空间也是正交的,由此,可以构造空间谱函数。
(6) 在空间谱域求取谱函数最大值,其谱峰对应的角度即是来波方向角的估计值。
‘贰’ 请问MUSIC算法和LMS算法到底是怎么回事,都是用来干吗的啊
这是两种不同的算法,MUSIC算法是多重信号分类算法,是经典的空间谱估计算法,通过将接受信号分成噪声子空间和信号子空间(这两子空间正交)达到超分辨谱估计.MUSIC算法可以完成DOA(波达方向)估计和频率估计.其实质是基于一维搜索的噪声子空间算法.
LMS算法是最小均方算法,是自适应技术的基础.LMS算法是达到输入信号与期望信号有最小的均方误差的一种算法.