导航:首页 > 源码编译 > 胥老师pid算法讲解

胥老师pid算法讲解

发布时间:2024-03-27 08:02:11

㈠ 一文搞懂PID控制算法

PID算法是工业应用中最广泛算法之一,在闭环系统的控制中,可自动对控制系统进行准确且迅速的校正。PID算法已经有100多年历史,在四轴飞行器,平衡小车、汽车定速巡航、温度控制器等场景均有应用。

之前做过循迹车项目,简单循迹摇摆幅度较大,效果如下所示:

PID算法优化后,循迹稳定性能较大提升,效果如下所示:

PID算法:就是“比例(proportional)、积分(integral)、微分(derivative)”,是一种常见的“保持稳定”控制算法。

常规的模拟PID控制系统原理框图如下所示:

因此可以得出e(t)和u(t)的关系:

其中:

Kp:比例增益,是调适参数;

Ki:积分增益,也是调适参数;

Kd:微分增益,也是调适参数;

e:误差=设定值(SP)- 回授值(PV);

t:目前时间。

数学公式可能比较枯燥,通过以下例子,了解PID算法的应用。

例如,使用控制器使一锅水的温度保持在50℃,小于50℃就让它加热,大于50度就断电不就行了?

没错,在要求不高的情况下,确实可以这么干,如果换一种说法,你就知道问题出在哪里了。

如果控制对象是一辆汽车呢?要是希望汽车的车速保持在50km/h不动,这种方法就存在问题了。

设想一下,假如汽车的定速巡航电脑在某一时间测到车速是45km/h,它立刻命令发动机:加速!

结果,发动机那边突然来了个100%全油门,嗡的一下汽车急加速到了60km/h,这时电脑又发出命令:刹车!结果乘客吐......

所以,在大多数场合中,用“开关量”来控制一个物理量就显得比较简单粗暴了,有时候是无法保持稳定的,因为单片机、传感器不是无限快的,采集、控制需要时间。

而且,控制对象具有惯性,比如将热水控制器拔掉,它的“余热”即热惯性可能还会使水温继续升高一小会。

此时就需要使用PID控制算法了。

接着咱再来详细了解PID控制算法的三个最基本的参数:Kp比例增益、Ki积分增益、Kd微分增益。

1、Kp比例增益

Kp比例控制考虑当前误差,误差值和一个正值的常数Kp(表示比例)相乘。需要控制的量,比如水温,有它现在的 当前值 ,也有我们期望的 目标值 。

当两者差距不大时,就让加热器“轻轻地”加热一下。

要是因为某些原因,温度降低了很多,就让加热器“稍稍用力”加热一下。

要是当前温度比目标温度低得多,就让加热器“开足马力”加热,尽快让水温到达目标附近。

这就是P的作用,跟开关控制方法相比,是不是“温文尔雅”了很多。

实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制了~

Kp越大,调节作用越激进,Kp调小会让调节作用更保守。

若你正在制作一个平衡车,有了P的作用,你会发现,平衡车在平衡角度附近来回“狂抖”,比较难稳住。

2、Kd微分增益

Kd微分控制考虑将来误差,计算误差的一阶导,并和一个正值的常数Kd相乘。

有了P的作用,不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。

设想有一个弹簧:现在在平衡位置上,拉它一下,然后松手,这时它会震荡起来,因为阻力很小,它可能会震荡很长时间,才会重新停在平衡位置。

请想象一下:要是把上图所示的系统浸没在水里,同样拉它一下 :这种情况下,重新停在平衡位置的时间就短得多。

此时需要一个控制作用,让被控制的物理量的“变化速度”趋于0,即类似于“阻尼”的作用。

因为,当比较接近目标时,P的控制作用就比较小了,越接近目标,P的作用越温柔,有很多内在的或者外部的因素,使控制量发生小范围的摆动。

D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。

Kd参数越大,向速度相反方向刹车的力道就越强,如果是平衡小车,加上P和D两种控制作用,如果参数调节合适,它应该可以站起来了。

3、Ki积分增益

Ki积分控制考虑过去误差,将误差值过去一段时间和(误差和)乘以一个正值的常数Ki。

还是以热水为例,假如有个人把加热装置带到了非常冷的地方,开始烧水了,需要烧到50℃。

在P的作用下,水温慢慢升高,直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。

这可怎么办?

P兄这样想:我和目标已经很近了,只需要轻轻加热就可以了。

D兄这样想:加热和散热相等,温度没有波动,我好像不用调整什么。

于是,水温永远地停留在45℃,永远到不了50℃。

根据常识,我们知道,应该进一步增加加热的功率,可是增加多少该如何计算呢?

前辈科学家们想到的方法是真的巧妙,设置一个积分量,只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。

这样一来,即使45℃和50℃相差不是太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加,系统就会慢慢意识到:还没有到达目标温度,该增加功率啦!

到了目标温度后,假设温度没有波动,积分值就不会再变动,这时,加热功率仍然等于散热功率,但是,温度是稳稳的50℃。

Ki的值越大,积分时乘的系数就越大,积分效果越明显,所以,I的作用就是,减小静态情况下的误差,让受控物理量尽可能接近目标值。

I在使用时还有个问题:需要设定积分限制,防止在刚开始加热时,就把积分量积得太大,难以控制。

PID算法的参数调试是指通过调整控制参数(比例增益、积分增益/时间、微分增益/时间) 让系统达到最佳的控制效果 。

调试中稳定性(不会有发散性的震荡)是首要条件,此外,不同系统有不同的行为,不同的应用其需求也不同,而且这些需求还可能会互相冲突。

PID算法只有三个参数,在原理上容易说明,但PID算法参数调试是一个困难的工作,因为要符合一些特别的判据,而且PID控制有其限制存在。

1、稳定性

若PID算法控制器的参数未挑选妥当,其控制器输出可能是不稳定的,也就是其输出发散,过程中可能有震荡,也可能没有震荡,且其输出只受饱和或是机械损坏等原因所限制。不稳定一般是因为过大增益造成,特别是针对延迟时间很长的系统。

2、最佳性能

PID控制器的最佳性能可能和针对过程变化或是设定值变化有关,也会随应用而不同。

两个基本的需求是调整能力(regulation,干扰拒绝,使系统维持在设定值)及命令追随 (设定值变化下,控制器输出追随设定值的反应速度)。有关命令追随的一些判据包括有上升时间及整定时间。有些应用可能因为安全考量,不允许输出超过设定值,也有些应用要求在到达设定值过程中的能量可以最小化。

3、各调试方法对比

4、调整PID参数对系统的影响

㈡ PID算法怎么用

U不能代替V,它们有关联但不是同一个东东。

一般在自动控制中,控制模块(PID等)输出的是控制值,但不是输出值。它们的关系在于PID控制模块输出到PID输出的部分——这个部分,你初入门把它当成“另一个系统X或另一个单独的设备X”即可。系统X是接受U输入,再产生V输入。
拿个实际的例子来说,有个PID要控制水箱水位,上面有入水的水龙头,下方是出水口流出。这个水位就是V输入,通过某个测量器(水位计什么的)输入到PID。然后PID输出U,这里请注意!它的输出U接到水龙头,而水龙头给出的控制方式,是以它的水量影响水箱水位,最后绕回来,水位被测出以V输入到PID。
所以在这个系统中,除PID外,“水龙头-出水-水箱水位”可以视为一套单独的系统,PID以输出影响水龙头(水龙头排出的水量),再注意一下,水龙头对水箱水位的控制是不可预知的,因为不是小学数学题,没有恒定值。水龙头开了100%能产生的流量,可能是200,可能是180,也可能是170,更进一步在水箱中,因为排出量可能变化的影响,即例水龙头恒定了流量,水位也会波动,因此PID外部的“水龙头-出水-水箱水位”系统,可能会有不可预知的波动,但“大方向”是可预料的,比如这个系统,PID的U影响水龙头,间接对水位的大小是一个正向变化,U越大,水位V(输出值)在正常情况下加一个向上增值的影响。
考虑有个同学,他按“人工思考”的方式控制水箱水位,他的能力是可以操作水龙头,能看到水箱水位,相当于上面的U和V,现在BOSS要求他说,必须把水箱水位控制在40%这个位置(给定值),有误差可以,尽量控制。当他看到水位低于40%时,会把水龙头开大,然后根据水位的变化再调水龙头出水的大小,好吧他发现开了水龙头,水位从30%缓慢上升,他一想可能是下面出水太多,就会把水龙头拧大一点(D算法,偏差变化越大,正反向开得越大,I算法,经过一定时间累积值越大,调节U的力度越大),反之亦然,水位从30%向给定的40%上升的速度太快,他会想,快到40%前把水龙头拧小点,让出水和进水差不多。

说回你那个电机,它接受U,相当于“水龙头”,后面电机的输出不可能立即当成V送回PID,而是控制某个设备作正向或反向的增加量,比如这电机连接到一个送料器,控制容器送出给料,那就是个反向增量,PID系统测量出料的多少为V,同样的,由于现实系统的一些不确定性,经常会有另一个扰动加在送料系统上。PID的目的就是找出控制参数,尽量找到一个平衡点,令U对V的间接输出趋近PID的给定值

㈢ 什么是“PID算法”

“PID算法”在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器。

它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。

PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活(PI、PD、…)。

控制点包含三种比较简单的PID控制算法,分别是:增量式算法,位置式算法,微分先行。 这三种PID算法虽然简单,但各有特点,基本上能满足一般控制的大多数要求。

PID增量式算法

离散化公式:

△u(k)= u(k)- u(k-1)

△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]

进一步可以改写成

△u(k)=Ae(k)-Be(k-1)+Ce(k-2)。

㈣ PID控制器算法

PID的增量型公式:

PID=Uk+KP*【E(k)-E(k-1)】+KI*E(k)+KD*【E(k)-2E(k-1)+E(k-2)】

PID算法具体分两种:一种是位置式的 ,一种是增量式的。

位置式PID的输出与过去的所有状态有关,计算时要对e(每一次的控制误差)进行累加,这个计算量非常大,而明显没有必要。而且小车的PID控制器的输出并不是绝对数值,而是一个△,代表增多少,减多少。换句话说,通过增量PID算法,每次输出是PWM要增加多少或者减小多少,而不是PWM的实际值。所以明白增量式PID就行了。


PID控制原理:

本系统通过摆杆(辊)反馈的位置信号实现同步控制。收线控制采用实时计算吵宽的实际卷径值,通过卷径的变化修正PID前馈量,可以使整个系统准确、稳定运行。

PID系统特点:

1、主驱动电机速度可以通过电位器来控制,把禅樱S350设置为SVC开环矢量控制,将模拟输出端子FM设定为运行频率,从而给定收卷用变频器的主速度。

2、收卷用S350变频器的主速度来自放卷(主驱动)的模拟输出端口。摆杆贺碰丛电位器模拟量

信号通过CI通道作为PID的反馈量。S350的频率源采用主频率Ⅵ和辅助频率源PID叠加的方式。通过调整运行过程PID参数,可以获得稳定的收放卷效果。

3、本系统启用逻辑控制和卷径计算功能,能使系统在任意卷径下平稳启动,同时两组PID参数可确保生产全程摆杆控制效果稳定。

㈤ 求灵训教育的PID算法(胥工全程主讲)视频

网页链接b站上有

㈥ PID算法的算法种类

离散化公式:
△u(k)= u(k)- u(k-1)
△u(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)]
进一步可以改写成
△u(k)=Ae(k)-Be(k-1)+Ce(k-2)
对于增量式算法,可以选择的功能有:
(1) 滤波的选择
可以对输入加一个前置滤波器,使得进入控制算法的给定值不突变,而是有一定惯性延迟的缓变量。
(2) 系统的动态过程加速
在增量式算法中,比例项与积分项的符号有以下关系:如果被控量继续偏离给定值,则这两项符号相同,而当被控量向给定值方向变化时,则这两项的符号相反。
由于这一性质,当被控量接近给定值的时候,反号的比例作用阻碍了积分作用,因而避免了积分超调以及随之带来的振荡,这显然是有利于控制的。但如果被控量远未接近给定值,仅刚开始向给定值变化时,由于比例和积分反向,将会减慢控制过程。
为了加快开始的动态过程,我们可以设定一个偏差范围v,当偏差|e(t)|< β时,即被控量接近给定值时,就按正常规律调节,而当|e(t)|>= β时,则不管比例作用为正或为负,都使它向有利于接近给定值的方向调整,即取其值为|e(t)-e(t-1)|,其符号与积分项一致。利用这样的算法,可以加快控制的动态过程。
(3) PID增量算法的饱和作用及其抑制
在PID增量算法中,由于执行元件本身是机械或物理的积分储存单元,如果给定值发生突变时,由算法的比例部分和微分部分计算出的控制增量可能比较大,如果该值超过了执行元件所允许的最大限度,那么实际上执行的控制增量将时受到限制时的值,多余的部分将丢失,将使系统的动态过程变长,因此,需要采取一定的措施改善这种情况。
纠正这种缺陷的方法是采用积累补偿法,当超出执行机构的执行能力时,将其多余部分积累起来,而一旦可能时,再补充执行。 离散公式:
u(k)=Kp*e(k) +Ki*+Kd*[e(k)-e(k-1)]
对于位置式算法,可以选择的功能有:
a、滤波:同上为一阶惯性滤波
b、饱和作用抑制: 在基本PID控制中,当有较大幅度的扰动或大幅度改变给定值时, 由于此时有较大的偏差,以及系统有惯性和滞后,故在积分项的作用下,往往会产生较大的超调量和长时间的波动。特别是对于温度、成份等变化缓慢的过程,这一现象将更严重。为此可以采用积分分离措施,即偏差较大时,取消积分作用;当偏差较小时才将积分作用投入。
另外积分分离的阈值应视具体对象和要求而定。若阈值太大,达不到积分分离的目的,若太小又有可能因被控量无法跳出积分分离区,只进行PD控制,将会出现残差。
离散化公式:

当时当|e(t)|>β时
q0 = Kp(1+Td/T)
q1 = -Kp(1+2Td/T)
q2 = Kp Td /T
u(t) = u(t-1) + Δu(t)
注:各符号含义如下
u(t);;;;; 控制器的输出值。
e(t);;;;; 控制器输入与设定值之间的误差。
Kp;;;;;;; 比例系数。
Ti;;;;;;; 积分时间常数。
Td;;;;;;; 微分时间常数。(有的地方用Kd表示)
T;;;;;;;; 调节周期。
β;;;;;;; 积分分离阈值 当根据PID位置算法算出的控制量超出限制范围时,控制量实际上只能取边际值U=Umax,或U=Umin,有效偏差法是将相应的这一控制量的偏差值作为有效偏差值计入积分累计而不是将实际的偏差计入积分累计。因为按实际偏差计算出的控制量并没有执行。
如果实际实现的控制量为U=U(上限值或下限值),则有效偏差可以逆推出,即:
=
然后,由该值计算积分项
微分先行PID算法
当控制系统的给定值发生阶跃时,微分作用将导致输出值大幅度变化,这样不利于生产的稳定操作。因此在微分项中不考虑给定值,只对被控量(控制器输入值)进行微分。微分先行PID算法又叫测量值微分PID算法。公式如下:
离散化公式:
参数说明同上
对于纯滞后对象的补偿
控制点采用了Smith预测器,使控制对象与补偿环节一起构成一个简单的惯性环节。
PID参数整定
(1) 比例系数Kp对系统性能的影响

比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。Kp偏大,振荡次数加多,调节时间加长。Kp太大时,系统会趋于不稳定。Kp太小,又会使系统的动作缓慢。Kp可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果Kc的符号选择不当对象状态(pv值)就会离控制目标的状态(sv值)越来越远,如果出现这样的情况Kp的符号就一定要取反。
(2) 积分控制Ti对系统性能的影响

积分作用使系统的稳定性下降,Ti小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度。
(3) 微分控制Td对系统性能的影响

微分作用可以改善动态特性,Td偏大时,超调量较大,调节时间较短。Td偏小时,超调量也较大,调节时间也较长。只有Td合适,才能使超调量较小,减短调节时间。

㈦ 什么是PID算法,PID控制器的原理是什么

PID算法具体分两种:一种是位置式的 ,一种是增量式的。

位置式PID的输出与过去的所有状态有关,计算时要对e(每一次的控制误差)进行累加,这个计算量非常大,而明显没有必要。而且小车的PID控制器的输出并不是绝对数值,而是一个△,代表增多少,带激减多少。换句话说,通过增量PID算法祥乱,每次输出是PWM要增加多少或者减小多少,而不是PWM的实际值。所以明白增量式PID就行了。

PID的增量型公式:

PID=Uk+KP*【E(k)-E(k-1)】+KI*E(k)+KD*【E(k)-2E(k-1)+E(k-2)】

拓展资料:

PID=port ID,在STP(生成树协议)中,若在端口收到的BPDU中BID和path cost相同时,则比较PID来选择阻塞端口。数字电视复用系统名词 PID(Packet Identifier) 在数蠢宴袜字电视复用系统中它的作用好比一份文件的文件名,我们可以称它为“标志码传输包” 。工程控制和数学物理方面 PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。PID由8位端口优先级加端口号组成,端口号占低位,默认端口号优先级128。

㈧ PID算法的参数怎么确定

PID是自动控制理论里的一种控制方法,PID的意思分别代表了比例、积分和微分。具体是什么意思呢?解释如下:

首先,我们有一个状态量,这个状态量在整个过程中,我们希望通过输入一个控制量,使这个状态量发生变化,并尽量的接近目标量。比如,在航线控制中,状态量是飞机当前的飞行航向,目标量是飞机为到达目标点而应该飞行的目标航向,控制量则是我们对其进行控制的方向舵面,或横滚角度。我们通过调整方向舵面、横滚角度来控制飞机的当前飞行航向,使之尽量接近为压航线而应该飞行的目标航向。

那么我们如何给出这个控制量,比如给哪个方向的、多大的方向舵量呢?最简单的考虑,是按照当前航向与目标航向的偏差大小来决定给多大的方向舵量:方向舵量p = P * (目标航向 – 当前航向)。这个方向舵量p,就是PID控制里的P部分,即比例部分。

那么,是不是只要有了P,我们的控制就完成了呢?实际上有了P,在大多数情况下,我们可以控制飞机朝目标量去接近,但可能会出现一些情况,比如,当飞机的安装有偏差(我们称之为系统误差),导致我们输出一个左5方向舵给舵机的时候,飞机才能直飞;当不给方向舵,即方向舵放在中位时,飞机会右偏。我们想象一下这个时候如果只有P项控制会有什么后果:假设初始状态是飞机飞行航向和目标航向一致,按P输出飞机方向舵应该在中位。而这时候,由于系统安装误差的存在,会导致飞机偏右,于是偏离了目标航向,然后P项控制会输出一个左舵,来修正航向偏差,刚开始的时候由于偏差量很小,输出的这个左舵也很小,于是飞机继续右偏,然后导致这个左舵加大,最终到达5,使飞机直飞,但这时候的飞行航向与目标航向始终存在一个偏差,这就是P的局限,无法修正系统误差。于是I项积分控制就出场了。

I项的输出这样定义:方向舵量i = I * (偏差和)。偏差和是当前航向和目标航向的偏差,每计算一次累加一次,一直累加到上次的值,再加上这次计算时当前航向和目标航向的偏差。即这个偏差和是跟以前的累积误差有关的。同样是上面的例子,I项的效果就这样体现:当飞机飞行航向与目标航向始终存在偏差时,I项将这个值累加上,比如说是5度吧,于是在P项之上,再叠加一个I*5的修正量,增加了一个左舵,比如说是2,然后导致飞机的飞行航向与目标航向的偏差会小一些。也许这一次计算输出的控制量并没有完全消除误差,但下一次再计算时,如果还有误差,于是会继续再增加输出控制量,使误差再小,于是经过多次计算后,使I项始终输出一个左5的舵量,使误差归零。这就是I项的作用,消除系统误差。

D项的意思是微分。为了便于解释,我们假设不存在系统误差,I项为0。比如当目标航向为0度,当前航向为30度时,根据P项作用,会输出一个左舵,假设为左15吧,使飞机向左转向,于是当前航向逐渐减小,比如减小到20度的时候,P项输出的左舵也会减小到左10。那么,当飞机转到0度时,跟目标航向一致时,P项输出方向舵回到中立位,飞机是否就保持0度直飞了呢?XX是否定的。由于飞机的惯性,飞机在左转弯时产生了一个左转弯的速率,导致飞机航向回到目标航向无偏差且方向舵回中后,仍然还会继续左转,然后产生负的偏差,P项再输出右方向舵,然后再回中。如果P项合适,我们看到的就是一个逐渐收敛于目标航向的飞行航向,即先左过头,然后右过头,再左过头,再右过头……最后过头量越来越小,最终到达目标航向。而D项的作用,就是尽量消除这个过头量,使之尽快贴近目标航向。

D项的定义是:方向舵d = D * (当前状态量 – 上一次的状态量)。在这个例子中,当飞机在从30度的航向,左转弯到0度目标航向的过程中,D项的输出实际上是转弯角速率的比例值,并且方向与P项相反,这样当飞机比较接近0度目标航向时,由于P值已经很小了,而这时候如果转弯速率不小,D项就输出一个右方向舵,抵消过快的转弯速率,阻止飞机航向到达目标航向后继续冲过头。

最后,方向舵量 = 方向舵量p + 方向舵量i + 方向舵量d,为完整的输出。根据飞行的表现,通过对P、I、D系数的调整,最终使输出的控制量能够尽快的控制状态量贴近目标量,并消除系统误差,避免过度震荡。

在完整的固定翼飞控系统中,除了航向通道需要PID控制外,其余需要控制的通道还有:副翼舵->目标横滚角、升降舵->目标俯仰角、目标俯仰角->高度差、油门舵->空速、目标航向->偏航距。

阅读全文

与胥老师pid算法讲解相关的资料

热点内容
哪里app可以上高中生物课 浏览:472
cad粗糙度快捷键命令大全 浏览:521
腾讯云服务器无法运行软件 浏览:342
奔跑吧哪个app 浏览:97
哪个app听音乐最好 浏览:281
考研英语2真题pdf 浏览:699
烟台编程积木教育环境好不好 浏览:214
python优秀代码 浏览:620
androidtop命令 浏览:455
你平时怎么排解压力 浏览:68
表格中的文件夹怎样设置 浏览:476
em78单片机 浏览:960
splitjava空格 浏览:248
电脑怎么谷歌服务器地址 浏览:515
nx自定义工具启动宏命令 浏览:101
程序员怎么解决无法访问互联网 浏览:303
java访问本地文件 浏览:747
瓦斯琪服务器怎么用 浏览:22
安卓主题用什么app 浏览:747
修改服务器pci地址空间 浏览:321