导航:首页 > 源码编译 > 字符驱动设备编译源码目录

字符驱动设备编译源码目录

发布时间:2024-03-31 14:58:35

① 怎么将驱动源代码编译linux系统

一、 驱动程序编译进内核的步骤
在 linux 内核中增加程序需要完成以下三项工作:
1. 将编写的源代码复制到 Linux 内核源代码的相应目录;
2. 在目录的 Kconfig 文件中增加新源代码对应项目的编译配置选项;
3. 在目录的 Makefile 文件中增加对新源代码的编译条目。

bq27501驱动编译到内核中具体步骤如下:
1. 先将驱动代码bq27501文件夹复制到 ti-davinci/drivers/ 目录下。
确定bq27501驱动模块应在内核源代码树中处于何处。
设备驱动程序存放在内核源码树根目录 drivers/ 的子目录下,在其内部,设备驱动文件进一步按照类别,类型等有序地组织起来。
a. 字符设备存在于 drivers/char/ 目录下
b. 块设备存放在 drivers/block/ 目录下
c. USB 设备则存放在 drivers/usb/ 目录下。
注意:
(1) 此处的文件组织规则并非绝对不变,例如: USB 设备也属于字符设备,也可以存放在 drivers/usb/ 目录下。
(2) 在 drivers/char/ 目录下,在该目录下同时存在大量的 C 源代码文件和许多其他目录。所有对于仅仅只有一两个源文件的设备驱动程序,可以直接存放在该目录下,但如果驱动程序包含许多源文件和其他辅助文件,那么可以创建一个新子目录。
(3) bq27501的驱动是属于字符设备驱动类别,虽然驱动相关的文件只有两个,但是为了方面查看,将相关文件放在了bq27501的文件夹中。在drivers/char/目录下增加新的设备过程比较简单,但是在drivers/下直接添加新的设备稍微复杂点。所以下面首先给出在drivers/下添加bq27501驱动的过程,然后再简单说明在drivers/char/目录下添加的过程。

2. 在/bq27501下面新建一个Makefile文件。向里面添加代码:
obj-$(CONFIG_BQ27501)+=bq27501.o
此时,构建系统运行就将会进入 bq27501/ 目录下,并且将bq27501.c 编译为 bq27501.o
3. 在/bq27501下面新建Kconfig文件。添加代码:
menu "bq27501 driver"

config BQ27501
tristate"BQ27501"
default y
---help---
Say 'Y' here, it will be compiled into thekernel; If you choose 'M', it will be compiled into a mole named asbq27501.ko.
endmenu
注意:help中的文字不能加回车符,否则make menuconfig编译的时候会报错。
4. 修改/drivers目录下的Kconfig文件,在endmenu之前添加一条语句‘source drivers/bq27501/Kconfig’ 对于驱动程序,Kconfig 通常和源代码处于同一目录。 若建立了一个新的目录,而且也希望 Kconfig 文件存在于该目录中的话,那么就必须在一个已存在的 Kconfig 文件中将它引入,需要用上面的语句将其挂接在 drivers 目录中的Kconfig 中。

5. 修改/drivers目下Makefile文件,添加‘obj-$(CONFIG_BQ27501) +=bq27501/’。这行编译指令告诉模块构建系统在编译模块时需要进入 bq27501/ 子目录中。此时的驱动程序的编译取决于一个特殊配置 CONFIG_BQ27501 配置选项。

6. 修改arch/arm目录下的Kconfig文件,在menu "Device Drivers……endmenu"直接添加语句
source "drivers/bq27501/Kconfig"

② 如何编译一个linux下的驱动模块

这是一个简单而完整的实例,对于理解Linux下的驱动模块是非常有帮助的。

1.源码如下:
/*
* hello.c -- the example of printf "hello world!" in the screen of driver program
*/
#include <linux/init.h>
#include <linux/mole.h>
MODULE_LICENSE("Dual BSD/GPL");/* declare the license of the mole ,it is necessary */
static int hello_init(void)
{
printk(KERN_ALERT "Hello World enter!\n");
return 0;
}
static int hello_exit(void)
{
printk(KERN_ALERT "Hello world exit!\n");
}
mole_init(hello_init); /* load the mole */
mole_exit(hello_exit); /* unload the mole */
进入目录:
[root@Alex_linux /]#cd /work/jiakun_test/moletest
[root@Alex_linux moletest]# vi hello.c
然后拷入上面书上的源码。
2.编译代码:
1>.首先我在2.4内核的虚拟机上进行编译,编译过程如下:
[root@Alex_linux moletest]#gcc -D__KERNEL__ -I /usr/src/linux -DMODULE -Wall -O2 -c -o hello.o hello.c
其中-I选项指定内河源码,也就是内核源码树路径。编译结果:
hello.c:1:22: net/sock.h: No such file or directory
hello.c: In function `hello_init':
hello.c:6: warning: implicit declaration of function `printk'
hello.c:6: `KERN_ALERT' undeclared (first use in this function)
hello.c:6: (Each undeclared identifier is reported only once
hello.c:6: for each function it appears in.)
hello.c:6: parse error before string constant
hello.c: In function `hello_exit':
hello.c:11: `KERN_ALERT' undeclared (first use in this function)
hello.c:11: parse error before string constant
hello.c: At top level:
hello.c:13: warning: type defaults to `int' in declaration of `mole_init'
hello.c:13: warning: parameter names (without types) in function declaration
hello.c:13: warning: data definition has no type or storage class
hello.c:14: warning: type defaults to `int' in declaration of `mole_exit'
hello.c:14: warning: parameter names (without types) in function declaration
hello.c:14: warning: data definition has no type or storage class
在网上查询有网友提示没有引入kernel.h
解决:vi hello.c
在第一行加入:#include <linux/kernel.h>
再次编译仍然报KERN_ALERT没有声明
修改编译条件-I,再次编译:
[root@Alex_linux moletest]#gcc -D__KERNEL__ -I /usr/src/linux -DMODULE -Wall -O2 -c -o hello.o hello.c
[root@Alex_linux moletest]#ls
hello.c hello.o Makefile
[root@Alex_linux moletest]#
2>.接着我尝试在2.6内核的虚拟机上进行编译
编译过程如下:
[root@JiaKun moletest]# ls
hello.c makefile
[root@JiaKun moletest]# vi hello.c
[root@JiaKun moletest]# make
make -C /mylinux/kernel/2.4.18-rmk7 M=/home/alex/test/moletest moles
make: *** /mylinux/kernel/2.4.18-rmk7: No such file or directory. Stop.
make: *** [moles] Error 2
[root@JiaKun moletest]# vi makefile
[root@JiaKun moletest]# make
make -C /usr/src/kernels/2.6.18-53.el5-i686 M=/home/alex/test/moletest moles
make[1]: Entering directory `/usr/src/kernels/2.6.18-53.el5-i686'
scripts/Makefile.build:17: /home/alex/test/moletest/Makefile: No such file or directory
make[2]: *** No rule to make target `/home/alex/test/moletest/Makefile'. Stop.
make[1]: *** [_mole_/home/alex/test/moletest] Error 2
make[1]: Leaving directory `/usr/src/kernels/2.6.18-53.el5-i686'
make: *** [moles] Error 2
[root@JiaKun moletest]# mv makefile Makefile
[root@JiaKun moletest]# make
make -C /usr/src/kernels/2.6.18-53.el5-i686 M=/home/alex/test/moletest moles
make[1]: Entering directory `/usr/src/kernels/2.6.18-53.el5-i686'
CC [M] /home/alex/test/moletest/hello.o
Building moles, stage 2.
MODPOST
CC /home/alex/test/moletest/hello.mod.o
LD [M] /home/alex/test/moletest/hello.ko
make[1]: Leaving directory `/usr/src/kernels/2.6.18-53.el5-i686'
[root@JiaKun moletest]# ls
hello.c hello.ko hello.mod.c hello.mod.o hello.o Makefile Mole.symvers

3.执行代码,加载驱动模块:
2.4内核加载模块:
insmod ./hello.o
但是此时并没有输出printk打印的信息。但是可以在/var/log/messages 中看到打印的信息,这是由于KERN_ALERT优先级不够高。这里
需要修改为:KERN_EMERG。再次编译,加载模块即可以看到结果
2.6内核加载模块:
[root@JiaKun moletest]# insmod hello.ko
[root@JiaKun moletest]#
Message from syslogd@ at Sat Jul 26 19:52:44 2008 ...
JiaKun kernel: Hello, world
有的朋友可能会出现insmod命令找不到的错误,这可能有下面几个原因:
<1> 你的系统没有安装mole-init-tools工具,关于此问题,只需安装即可,但是一般装完系统是有这个命令的。
<2> 环境变量没有添加导致不能使用该命令。使用echo $PATH即可查看PATH环境变量,发现没有/sbin这个路径,所以你当然不能使用insmod这个命令了。解决的方法很简单,只需在命令行输入:
PATH = "$PATH:/sbin"即可添加。(insmod在/sbin这个目录下,你可以使用whereis insmod查看)。
<3> insmod这个命令需要在root权限下才能使用。
加载完成后你可以输入lsmod查看hello这个模块哦。

4.卸载驱动模块:rmmod hello.
加载模块后就可在屏幕上看到如下信息:Hello world enter.
卸载时就可在屏幕上看到如下信息:hello world exit.
[root@JiaKun moletest]# rmmod hello.ko
[root@JiaKun moletest]#
Message from syslogd@ at Sat Jul 26 19:52:58 2008 ...
JiaKun kernel: Goodbye, cruel world

另外,如果有多个文件,则按下列方式编写Makefile文件(file1.c、file2.c):
obj -m := molename.o
mole-objs := file1.o file2.o

③ 怎么编译目标机linux设备驱动

在宿主机上安装开发工具和下载linux源码(要求版本号和目标机上的linux内核版本一致)。开发工具主要有gcc、gdb、make等,这些工具在redhat或fc中默认就安装了,在debian或Ubuntu中可以通过下面这个命令安装:
apt-get install build-essential
linux源码可以通过以下几种途径获得:
将源码解压到/usr/src/目录后,进入linux-source-(版本号)目录中执行下面几个命令:
make oldconfig
make prepare
make scripts
直接去www.kernel.org下载
通过包管理工具下载源码,在debian和Ubuntu中可以通过下面这个命令下载,
apt-get install linux-source-(版本号) ,下载后的文件在/usr/src目录中,解压到该目录即可
编写Linux驱动程序,以一个最简单的hello.c为例,hello.c的内容如下:

#include "linux/init.h"
#include "linux/mole.h"

static int hello_init(void)
{
printk(KERN_ALERT "Hello World linux_driver_mole\n");
return 0;
}

static void hello_exit(void)
{
printk(KERN_ALERT "Goodbey linux_driver_mole\n");
}

mole_init(hello_init);
mole_exit(hello_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("lpj");

写Makefile文件,一个示例如下,里面各项参数根据实际情况更改:

#sample driver mole
obj-m := hello.o
KDIR = /usr/src/linux-source-2.6.24/

all:
$(MAKE) -C $(KDIR) M=$(PWD)

.PHONY:clean
clean:
rm -f *.mod.c *.mod.o *.ko *.o *.tmp_versions

编译,在hello.c和Makefile所在目录下执行 make 即可,编译后在当前目录生成hello.ko文件
加载并测试:加载使用insmod或modprobe命令来实现,如在当前路径执行如下代码:
insmod hello.ko 或 modprobe hello
注意,如果在虚拟终端加载内核的话,将看不到内核打印信息,因为内核打印信息不会输出到虚拟终端,而是输出到/proc/kmsg文件中,所以可以通过以下方式查看内核信息:
cat /proc/kmsg 会一直打印,需要Ctrl-C手动终止
dmesg 或 dmesg | tail -N ,N为一数字,表示显示最后N行
卸载:使用rmmod命令卸载驱动模块,如 rmmod hello

④ 高手进阶:Linux操作系统驱动编译与运行

一、手工加载测试
1、insmod
./key_test.ko
加载驱动模块到内核
2、cat
/proc/moles
|grep
key_test
查看key_test模块在内核中的地址,不加过滤器可以看到全部加载的模块。
3、lsmod
显示模块,这时可以看到所有的模块名字,后面跟的是主设备号和次设备号。
4、rmmod
key_test
把模块从内核里卸载。
二、动态加载
1、把key_test.c源代码放到内核源代码的/drives/char/下,因为这是属字符型驱动,放在这编译到zImage中。
2、这时我们make
menuconfig
编译内核是看不到key_test这个选项的。我们把这个选项写到菜单里面才行。在内核源代码的/drives/char/下有一个Kconfig文件,打开
(1)
vi
Kconfig
加几行到里面:
config
ConFig_key_test
bool
"key
test"
//前面那个bool换成tristate就是支持模块化编译
上面句是在make
menuconfig时会出现key
test这个选项在drive/char子菜单下,bool前面是TAB键
------help----------
这句是出现在菜单选项下面的
This
key
test
help.
这句是你的驱动的说明会出现在help里面
(2)在/drivers/char目录下的Makefile文件里加上一句:
obj-$(CONFIG_key_test)
+=
key_test.o
上面这句是让Make时把key_test编译到内核中.
(3)
make
menuconfig
把key_test选项选取上
(4)
make
zImage
生成zImage文件,重启动加载这个新编的内核。
3、lsmod就能看到key_test了,但是还不能用,没有接口,也就是/dev下面没有
4、mknod
/dev/key_test
c
121
0
这是创建设备到/dev下,使普通程序可以调用了,121是在源代码里定义的它的主设备号,0是次设备号。
5、cat
/dev/key_test
这是相当于open这个设备了,或者写一个程序直接调用open、write等函数。
fd=("/dev/key_test",ORW);

⑤ 新人求教 驱动源码编译安装

1、安装scons
(1) 下载python2.7, 使用x86_32位,因为scons只有32位安装包可用;
(2) 下载scons2.3.0;
(3) 安装python 和 scons, 将C:\Python27\Scripts写入PATH;
(4) 下载安装pywin32 ,It is recommended you install pywin32 if you want to do parallel builds (scons -j)

2、安装boost库(1.49版本).
解压后双击bootstrap.bat,生成bjam.exe后,cd到目录c:\boost下,(将boost_1_49更名为boost了)编译boost。
编译命令:C:\boost>bjam variant=release --with-filesystem --with-thread --with-date_time --with-program_options threading=multi toolset=msvc-10.0 link=static runtime-link=static address-model=32
这是使用VS2010环境编译的release版本,编译完成后,生成C:\boost\stage\lib文件夹,下面有6个lib库:

如果要编译成debug版本,使用命令:bjam variant=debug --with-filesystem --with-thread --with-date_time --with-program_options threading=multi toolset=msvc-10.0 link=static runtime-link=static address-model=32

编译完成后,生成C:\boost\stage\lib文件夹,下面有10个lib库和dll:

此处为MongoDB文档中对于编译boost库的要求原文:
When using bjam, MongoDB expects
variant=debug for debug builds, and variant=release for release builds
threading=multi
link=static runtime-link=static for release builds
address-model=64 for 64 bit(64位的话,把32换为64)。link=static runtime-link=static,boost需要编译成静态库,因为mongodb只会去链接boost的静态库
address-model=64在win7 64环境下此项必须,不加在编译mongodb的c++ client时会出现链接错误。

3、下载mongo2.4.6源码 http://www.mongodb.org/downloads官网下载
编译Mongoclient.lib

cmd命令提示符下,cd到解压后的文件目录,例如我放在了E盘,E:\mongodb-src-r2.4.6,输入命令:
scons –-dd --32 mongoclient.lib // build C++ client driver library
Add --64 or --32 to get the 64- and 32-bit versions, respectively. Replace --release with --dd to build a debug build.
编译后在mongodb\build\win32\32\dd\client_build\生成mongoclient.lib.

4、测试程序
就用Mongodb自带的例子吧,使用VS2010打开E:\mongodb-src-r2.4.6\src\mongo\client\examples中的simple_client_demo.vcxproj,编译,会提示生成simple_client_demo.sln,保存。
使用debug模式,配置工程环境:打开工程->属性,配置Configuration Properties下的VC++ Directories,头文件路径添加C:\boost,Lib库路径添加boost的lib,以及mongodb client的lib:
C:\boost\stage\lib

E:\mongodb-src-r2.4.6\build\win32\32\dd\client_build
进入C/C++下面的Code Generation,将Runtime Library设置为Multi-threaded Debug (/MTd)
进入Linker下面的Input,设置Additional Dependencies,添加ws2_32.lib,psapi.lib,Dbghelp.lib,mongoclient.lib
将E:\mongodb-src-r2.4.6\build\win32\32\dd\mongo\base下生成的error_codes.h和error_codes.cpp文件,拷贝到E:\mongodb-src-r2.4.6\src\mongo\base目录下。
ok,编译、运行.

5、问题解决
error LNK2038: mismatch detected for '_MSC_VER': value '1700' doesn't match value '1600' in error_codes.obj
1>mongoclient_d.lib(dbclient.obj) : error LNK2038: mismatch detected for '_MSC_VER': value '1700' doesn't match value '1600' in error_codes.obj
1>mongoclient_d.lib(assert_util.obj) : error LNK2038: mismatch detected for '_MSC_VER': value '1700' doesn't match value '1600' in error_codes.obj
1>mongoclient_d.lib(jsobj.obj) : error LNK2038: mismatch detected for '_MSC_VER': value '1700' doesn't match value '1600' in error_codes.obj
1>mongoclient_d.lib(status.obj) : error LNK2038: mismatch detected for '_MSC_VER': value '1700' doesn't match value '1600' in error_codes.obj
1>mongoclient_d.lib(mutexdebugger.obj) : error LNK2038: mismatch detected for '_MSC_VER': value '1700' doesn't match value '1600' in error_codes.obj

VS的版本不匹配,lib是在更高级的版本中编译生成的,而使用的时候,是在低级版本中使用的,所以出现了不匹配的错误。例如,我在VS2010 SP1和VS2012的环境下编译的,而使用是在VS2010上使用,所以在编译时,出现了以上问题。

1>mongoclient.lib(stacktrace.obj) : error LNK2001: unresolved external symbol __imp_SymCleanup
1>mongoclient.lib(stacktrace.obj) : error LNK2001: unresolved external symbol __imp_SymGetMoleInfo64
1>mongoclient.lib(stacktrace.obj) : error LNK2001: unresolved external symbol __imp_SymInitialize
1>mongoclient.lib(stacktrace.obj) : error LNK2001: unresolved external symbol __imp_StackWalk64
1>mongoclient.lib(stacktrace.obj) : error LNK2001: unresolved external symbol __imp_SymFromAddr

在工程依赖库中添加Dbghelp.lib

其它问题,看看你手头的编译器、编译出来的boost库版本、mongoclient.lib的版本,是否对应好了。

⑥ 嵌入式系统Linux内核开发实战指南的目录

第1部分 嵌入式系统硬件开发
第1章 嵌入式系统概述 2
这一章对嵌入式系统的概念及其特点和应用作了概括介绍,笔者根据自己多年的经验阐述了对嵌入式系统的理解,并对一些常见的嵌入式处理器的硬件数据进行了比较。
1.1 嵌入式系统概念 2
1.2 嵌入式处理器 3
1.3 嵌入式系统应用 4
1.4 嵌入式系统发展 4
1.5 一些嵌入式处理器的硬件特性比较 5
第2章 ARM处理器概述 16
为了使本书内容完整,从第2章到第7章中的内容大部分是笔者阅读《ARM体系结构与编程》(详情参见附录中的参考文献)的笔记和心得,把与嵌入式系统开发和Linux内核密切相关的硬件知识进行了概括和整理,本章主要介绍了ARM处理器的特点、ARM处理器的体系架构版本和ARM处理器系列。
2.1 ARM发展历程 16
2.2 ARM处理器特点 17
2.3 ARM处理器应用 17
2.4 ARM体系架构 18
2.4.1 ARM体系架构版本 18
2.4.2 ARM体系架构变种(Variant) 20
2.4.3 ARM体系架构版本命名格式 22
2.5 ARM处理器 22
2.5.1 ARM7系列处理器 23
2.5.2 ARM9系列处理器 24
2.5.3 ARM9E系列处理器 24
2.5.4 ARM10E系列处理器 25
2.5.5 SecurCore系列处理器 25
2.5.6 StrongARM处理器 26
2.5.7 Xscale处理器 26
第3章 ARM指令及其寻址方式 27
本章主要介绍了ARM处理器的指令和寻址方式以及ARM汇编伪指令,这是做ARM处理器应用系统底层软件开发必备的知识。
3.1 ARM处理器的程序状态寄存器(PSR) 27
3.2 ARM指令的条件码 28
3.3 ARM指令介绍 29
3.3.1 跳转指令 29
3.3.2 数据处理指令 30
3.3.3 乘法指令 31
3.3.4 杂类算术指令 32
3.3.5 状态寄存器访问指令 32
3.3.6 Load/Store内存访问指令 33
3.3.7 批量Load/Store内存访问指令 34
3.3.8 LDREX和STREX指令 35
3.3.9 信号量操作指令 37
3.3.10 异常中断产生指令 37
3.3.11 ARM协处理器指令 37
3.4 ARM指令寻址方式 39
3.4.1 数据处理指令的操作数的寻址方式 39
3.4.2 字及无符号字节的Load/Store指令的寻址方式 43
3.4.3 杂类Load/Store指令的寻址方式 47
3.4.4 批量Load/Store指令的寻址方式 49
3.4.5 协处理器Load/Store指令的寻址方式 51
3.4.6 ARM指令的寻址方式总结 52
3.5 ARM汇编伪操作(Directive) 53
3.5.1 符号定义伪操作 54
3.5.2 数据定义伪操作 54
3.5.3 汇编控制伪操作 56
3.5.4 栈中数据帧描述伪操作 57
3.5.5 信息报告伪操作 57
3.5.6 其他伪操作 58
3.6 ARM汇编伪指令 59
3.7 Thumb指令介绍 60
第4章 ARM处理器内存管理单元(MMU) 61
本章主要介绍了ARM处理器内存管理单元(MMU)的工作原理,Linux内存管理功能是通过处理器硬件MMU实现的,在没有MMU的处理器系统中,Linux只能工作在物理地址模式,没有虚拟(线性)地址空间的概念。
4.1 ARM处理器中CP15协处理器的寄存器 61
4.1.1 访问CP15寄存器的指令 61
4.1.2 CP15寄存器介绍 62
4.2 MMU简介 70
4.3 系统访问存储空间的过程 71
4.3.1 使能MMU时的情况 71
4.3.2 禁止MMU时的情况 71
4.3.3 使能/禁止MMU时应注意的问题 72
4.4 ARM处理器地址变换过程 72
4.4.1 MMU的一级映射描述符 73
4.4.2 MMU的二级映射描述符 74
4.4.3 基于段的地址变换过程 75
4.4.4 粗粒度大页地址变换过程 75
4.4.5 粗粒度小页地址变换过程 76
4.4.6 细粒度大页地址变换过程 76
4.4.7 细粒度小页地址变换过程 77
4.4.8 细粒度极小页地址变换过程 77
4.5 ARM存储空间访问权限控制 78
4.6 TLB操作 79
4.6.1 使TLB内容无效 79
4.6.2 锁定TLB内容 79
4.6.3 解除TLB中被锁定的地址变换条目 80
4.7 存储访问失效 80
4.7.1 MMU失效(MMU Fault) 80
4.7.2 外部存储访问失效(External Abort) 81
第5章 ARM处理器的Cache和Write Buffer 82
本章主要介绍了ARM处理器高速缓存(Cache)和写缓存(Write Buffer)的工作原理,使读者了解如何提高处理器的性能。
5.1 Cache和Write Buffer一般性介绍 82
5.1.1 Cache工作原理 82
5.1.2 地址映像方式 83
5.1.3 Cache写入方式原理简介 84
5.1.4 关于Write-through和Write-back 85
5.1.5 Cache替换策略 86
5.1.6 使用Cache的必要性 87
5.1.7 使用Cache的可行性 87
5.2 ARM处理器中的Cache和Write Buffer 88
5.2.1 基本概念 88
5.2.2 Cache工作原理 88
5.2.3 Cache地址映射和变换方法 89
5.2.4 Cache分类 90
5.2.5 Cache替换算法 91
5.2.6 Cache内容锁定 91
5.2.7 MMU映射描述符中B位和C位的含义 92
5.2.8 Cache和Writer Buffer编程接口 93
5.3 ARM处理器的快速上下文切换技术 94
5.3.1 FCSE概述 94
5.3.2 FCSE原理 94
5.3.3 FCSE编程接口 95
第6章 ARM处理器存储访问一致性问题 97
本章介绍了在支持MMU、Cache和DMA的系统中可能出现的存储访问一致性问题,以及Linux中解决类似问题的方法。
6.1 存储访问一致性问题介绍 97
6.1.1 地址映射关系变化造成的数据不一致性 97
6.1.2 指令cache的数据不一致性问题 98
6.1.3 DMA造成的数据不一致问题 99
6.1.4 指令预取和自修改代码 99
6.2 Linux中解决存储访问一致性问题的方法 99
第7章 ARM处理器工作模式与异常中断处理 101
本章主要介绍了ARM处理器的工作模式和异常中断处理过程,这是ARM处理器系统启动程序编写者或Bootloader开发人员的必备知识。
7.1 ARM处理器工作模式 101
7.2 ARM处理器异常中断向量表和优先级 103
7.3 ARM处理器异常中断处理 104
7.3.1 进入异常中断处理 104
7.3.2 退出异常中断处理 105
7.4 ARM处理器的中断(IRQ或FIQ) 109
第8章 ARM处理器启动过程 110
本章根据笔者的开发经验介绍了ARM处理器系统的启动过程以及编写ARM处理器系统启动程序需要注意的事项。
8.1 ARM处理器上电/复位操作 110
8.2 ARM处理器系统初始化过程 111
8.3 ARM处理器系统初始化编程注意事项 111
第9章 嵌入式系统设计与调试 113
本章根据笔者10多年的开发经验介绍了嵌入式系统的设计流程和调试方法,列举了大量笔者工作中碰到的实际案例。本章内容对于嵌入式系统硬件开发和调试有较高的参考、指导价值。
9.1 嵌入式系统设计流程 113
9.2 嵌入式系统硬件原理设计与审核 114
9.3 硬件设计工具软件 117
9.4 嵌入式系统调试仿真工具 117
9.5 嵌入式系统调试诊断方法 118
第10章 自制简易JTAG下载烧写工具 123
本章根据笔者自己制作简易JTAG线缆的经验,介绍了简易JTAG线缆的硬件原理和软件流程,这是初学者必备的最廉价的工具,必须掌握。
10.1 JTAG简介 123
10.1.1 一些基本概念 124
10.1.2 JTAG接口信号 124
10.1.3 TAP控制器的状态机 125
10.1.4 JTAG接口指令集 129
10.2 简易JTAG线缆原理 130
10.2.1 PC并口定义 130
10.2.2 PC并口的寄存器 131
10.2.3 简易JTAG线缆原理图 133
10.2.4 简易JTAG线缆烧写连接图(见图10-5) 134
10.3 简易JTAG烧写代码分析 135
10.3.1 简易JTAG烧写程序(flashp)使用说明 135
10.3.2 flash与CPU连接及flash属性描述文件 136
10.3.3 简易JTAG烧写程序的执行逻辑和流程 138
第2部分 Linux内核开发初步
第11章 Bootloader 142
本章根据笔者的工作经验介绍了流行的几种Bootloader、Bootloader应该具备的基本功能以及Bootloader的裁剪与移植。
11.1 Bootloader的任务和作用 142
11.2 各种各样的Bootloader 143
11.3 Bootloader编译环境 144
11.4 Bootloader的移植与裁减 145
11.5 编译Bootloader 145
11.6 烧写Bootloader 146
11.7 Bootloader使用举例 148
11.8 Bootloader修改举例 149
第12章 创建嵌入式Linux开发环境 151
本章介绍了如何创建嵌入式系统Linux内核交叉开发环境,本章和后续3章的内容是嵌入式系统Linux内核开发的基础,必须掌握。
12.1 安装Linux host 151
12.2 在虚拟机中安装Linux host 152
12.3 安装Linux交叉编译环境 157
12.4 在主机上设置TFTP Server 160
12.5 在主机上设置DHCP Server 161
12.6 在主机上设置Telnet server 161
12.7 在开发过程中使用NFS 162
12.8 设置超级终端 163
第13章 编译Linux内核 166
本章介绍了Linux内核的配置和编译方法。
13.1 获取Linux内核源代码 166
13.2 Linux内核目录结构 166
13.3 配置Linux内核 167
13.4 编译Linux内核 168
第14章 创建Linux根文件系统 170
本章介绍了Linux的根文件系统的结构以及创建根文件系统的方法。
14.1 根文件系统概述 170
14.2 根文件系统目录结构 171
14.3 获取根文件系统组件源代码 171
14.4 编译根文件系统源代码 171
14.5 创建一个32MB的RAMDISK根文件系统 173
14.6 在根文件系统中添加驱动模块或者应用程序 173
第15章 固化Linux内核和根文件系统 174
本章介绍了固化(烧写)Linux内核和根文件系统的方法。
第16章 关于Clinux 176
本章简要介绍了Clinux与标准Linux的区别。
16.1 Clinux简介 176
16.2 Clinux源代码目录结构 177
16.3 Clinux与标准Linux的区别 178
16.4 编译Clinux 179
第3部分 Linux 2.6内核原理
第17章 Linux 2.6.10@ARM启动过程 182
本章以start_kernel()和init()函数中调用到的函数说明的方式,介绍了从Linux汇编代码入口到init内核进程最后调用用户空间init命令的Linux整个启动过程。本章内容是笔者第一次阅读Linux内核源代码时对这些函数的注释,仅供读者了解start_kernel()和init()函数中调用到的每个函数的大致功能时使用。
17.1 Linux 2.6.10中与ARM处理器平台硬件相关的结构和全局变量 182
17.1.1 相关数据结构 182
17.1.2 相关全局变量 187
17.2 Linux汇编代码入口 189
17.3 Linux汇编入口处CPU的状态 189
17.4 start_kernel()函数之前的汇编代码执行过程 190
17.5 start_kernel()函数中调用的函数介绍 192
17.5.1 lock_kernel()函数 192
17.5.2 page_address_init()函数 192
17.5.3 printk(linux_banner) 193
17.5.4 setup_arch(&command_line)函数 193
17.5.5 setup_per_cpu_areas()函数 198
17.5.6 smp_prepare_boot_cpu()函数 199
17.5.7 sched_init()函数 199
17.5.8 build_all_zonelists()函数 200
17.5.9 page_alloc_init()函数 200
17.5.10 printk(Kernel command line: %s , saved_command_line) 201
17.5.11 parse_early_param()函数 201
17.5.12 parse_args()函数 201
17.5.13 sort_main_extable()函数 202
17.5.14 trap_init()函数 202
17.5.15 rcu_init()函数 202
17.5.16 init_IRQ()函数 203
17.5.17 pidhash_init()函数 203
17.5.18 init_timers()函数 203
17.5.19 softirq_init()函数 204
17.5.20 time_init()函数 204
17.5.21 console_init()函数 205
17.5.22 profile_init()函数 206
17.5.23 local_irq_enable()函数 207
17.5.24 vfs_caches_init_early()函数 207
17.5.25 mem_init()函数 208
17.5.26 kmem_cache_init()函数 210
17.5.27 numa_policy_init()函数 225
17.5.28 calibrate_delay()函数 227
17.5.29 pidmap_init()函数 228
17.5.30 pgtable_cache_init()函数 229
17.5.31 prio_tree_init()函数 229
17.5.32 anon_vma_init()函数 229
17.5.33 fork_init(num_physpages)函数 229
17.5.34 proc_caches_init()函数 230
17.5.35 buffer_init()函数 231
17.5.36 unnamed_dev_init()函数 231
17.5.37 security_init()函数 231
17.5.38 vfs_caches_init(num_physpages)函数 232
17.5.39 radix_tree_init()函数 237
17.5.40 signals_init()函数 237
17.5.41 page_writeback_init()函数 237
17.5.42 proc_root_init()函数 238
17.5.43 check_bugs()函数 240
17.5.44 acpi_early_init()函数 244
17.5.45 rest_init()函数 244
17.6 init()进程执行过程 265
17.6.1 smp_prepare_cpus(max_cpus)函数 265
17.6.2 do_pre_smp_initcalls()函数 265
17.6.3 fixup_cpu_present_map()函数 267
17.6.4 smp_init()函数 267
17.6.5 sched_init_smp()函数 268
17.6.6 populate_rootfs()函数 268
17.6.7 do_basic_setup()函数 283
17.6.8 sys_access()函数 292
17.6.9 free_initmem()函数 301
17.6.10 unlock_kernel()函数 301
17.6.11 numa_default_policy()函数 302
17.6.12 sys_p()函数 302
17.6.13 execve()函数 302
第18章 Linux内存管理 305
从本章开始,笔者将带领读者走进神秘的Linux内核世界。笔者在阅读内核源代码以及两本相关参考书(见参考文献)的基础上,以自己的理解和语言总结概括了Linux内核每个组件的原理。笔者对与每个内核组件相关的关键数据结构和全局变量作了尽量详尽的说明,并且对核心函数进行了详细注释,在向读者灌输理论知识的同时引导读者自己去阅读、分析Linux内核源代码。本章讲解了Linux内核第一大核心组件“内存管理”的原理和实现内幕。
18.1 Linux内存管理概述 305
18.1.1 Linux内存管理的一些基本概念 305
18.1.2 内存管理相关数据结构 309
18.1.3 内存管理相关宏和全局变量 330
18.1.4 Linux内存管理的任务 341
18.1.5 Linux中的物理和虚拟存储空间布局 341
18.2 为虚拟(线性地址)存储空间建立页表 345
18.3 设置存储空间的访问控制属性 348
18.4 Linux中的内存分配和释放 350
18.4.1 在系统启动初期申请内存 350
18.4.2 系统启动之后的内存分配与释放 360
第19章 Linux进程管理 480
本章讲解了Linux内核第二大核心组件“进程管理”的原理和实现内幕。
19.1 进程管理概述 480
19.1.1 进程相关概念 480
19.1.2 进程分类 481
19.1.3 0号进程 481
19.1.4 1号进程 481
19.1.5 其他一些内核线程 482
19.1.6 进程描述符(struct task_struct) 482
19.1.7 进程状态 482
19.1.8 进程标识符(PID) 483
19.1.9 current宏定义 484
19.1.10 进程链表 484
19.1.11 PID hash表和链表 485
19.1.12 硬件上下文(Hardware Context) 485
19.1.13 进程资源限制 485
19.1.14 进程管理相关数据结构 486
19.1.15 进程管理相关宏定义 502
19.1.16 进程管理相关全局变量 514
19.2 进程管理相关初始化 520
19.3 进程创建与删除 529
19.4 进程调度 551
19.4.1 进程类型 553
19.4.2 进程调度类型 554
19.4.3 基本时间片计算方法 555
19.4.4 动态优先级算法 556
19.4.5 交互式进程 556
19.4.6 普通进程调度 557
19.4.7 实时进程调度 557
19.4.8 进程调度函数分析 558
19.5 进程切换 576
19.6 用户态进程间通信 581
19.6.1 信号(Signal) 581
19.6.2 管道(pipe)和FIFO(命名管道) 627
19.6.3 进程间通信原语(System V IPC) 641
第20章 Linux文件管理 651
本章讲解了Linux内核第三大核心组件“文件系统”的原理和实现内幕。
20.1 文件系统概述 651
20.1.1 Linux文件管理相关概念 652
20.1.2 Linux文件管理相关数据结构 657
20.1.3 Linux文件管理相关宏定义 682
20.1.4 Linux文件管理相关全局变量 691
20.2 文件管理相关初始化 699
20.3 文件系统类型注册 711
20.4 挂接文件系统 712
20.5 文件系统类型超级块读取 730
20.5.1 get_sb_single()通用超级块读取函数 731
20.5.2 get_sb_nodev()通用超级块读取函数 737
20.5.3 get_sb_bdev()通用超级块读取函数 738
20.5.4 get_sb_pseudo()通用超级块读取函数 740
20.6 路径名查找 747
20.7 访问文件操作 759
20.7.1 打开文件 759
20.7.2 关闭文件 766
20.7.3 读文件 768
20.7.4 写文件 785
20.8 异步I/O系统调用 792
20.9 Linux特殊文件系统 792
20.9.1 rootfs文件系统 793
20.9.2 sysfs文件系统 797
20.9.3 devfs设备文件系统 800
20.9.4 bdev块设备文件系统 803
20.9.5 ramfs文件系统 804
20.9.6 proc文件系统 804
20.10 磁盘文件系统 813
20.10.1 ext2文件系统相关数据结构 813
20.10.2 ext2文件系统磁盘分区格式 819
20.10.3 ext2文件系统的各种文件 820
20.10.4 创建ext2文件系统 821
20.10.5 ext2文件系统的操作方法 822
20.11 关于initramfs 824
20.11.1 initramfs概述 824
20.11.2 initramfs与initrd的区别 824
20.11.3 initramfs相关全局变量 825
20.11.4 initramfs被编译链接的位置 825
20.11.5 initramfs文件的生成过程 825
20.11.6 initramfs二进制文件格式说明(cpio格式) 828
20.11.7 initramfs二进制文件和列表文件对照示例 829
20.11.8 initramfs利弊 830
20.12 关于initrd 830
20.12.1 initrd概述 830
20.12.2 initrd相关全局变量 831
20.13 关于gzip压缩文件 832
第21章 Linux模块设计 834
本章讲解了Linux内核模块程序与应用程序的区别以及如何编写和加载Linux内核模块程序。
21.1 Linux模块设计概述 834
21.2 Linux的内核空间和用户空间 834
21.3 内核模块与应用程序的区别 835
21.4 编译模块 837
21.5 装载和卸载模块 837
21.6 模块层叠 838
21.7 模块版本依赖 839
21.8 模块编程示例 839
第22章 Linux系统异常中断管理 841
本章讲解了Linux内核如何管理系统异常中断以及Linux系统调用的实现内幕。
22.1 Linux异常中断处理 841
22.2 指令预取和数据访问中止异常中断处理 849
22.2.1 指令预取中止异常中断处理 850
22.2.2 数据访问中止异常中断处理 858
22.3 Linux中断处理 863
22.3.1 内核模式下的中断处理 863
22.3.2 用户模式下的中断处理 867
22.4 从中断返回 868
22.5 Linux中断管理 869
22.5.1 Linux中断管理相关数据结构与全局变量 870
22.5.2 Linux中断管理初始化 872
22.5.3 安装和卸载中断处理程序 874
22.5.4 使能和禁止中断 878
22.6 Linux系统调用 880
22.6.1 Linux系统调用内核实现过程 880
22.6.2 从系统调用返回 889
22.6.3 Linux系统调用用户程序接口函数 890
22.6.4 Linux系统调用用户接口函数与内核实现函数之间参数传递 899
第23章 Linux软中断和工作队列 901
本章讲解了Linux内核中的两种延迟处理机制“软中断”和“工作队列”的原理和实现。
23.1 概述 901
23.2 Linux软中断 902
23.2.1 软中断相关数据结构和全局变量 903
23.2.2 软中断初始化 904
23.2.3 软中断的核心操作函数do_softirq() 908
23.2.4 软中断看护进程执行函数ksoftirqd() 912
23.2.5 如何使用软中断 913
23.3 Linux工作队列 918
23.3.1 Linux工作队列相关数据结构和全局变量 918
23.3.2 Linux工作队列初始化 921
23.3.3 将工作加入到工作队列中 924
23.3.4 工作者进程执行函数worker_thread() 928
23.3.5 使用Linux工作队列 931
第24章 Linux并发与竞态 933
本章讲解了Linux内核同步机制,包括几种锁定技术以及免锁算法。
24.1 并发与竞态概述 933
24.1.1 Linux中的并发源 934
24.1.2 竞态可能导致的后果 934
24.1.3 避免竞态的规则 934
24.2 消除竞态的“锁定”技术 935
24.2.1 信号量(semphore)和互斥体(mutual exclusion) 935
24.2.2 读写信号量(rw_semaphore) 938
24.2.3 完成量(completion) 941
24.2.4 自旋锁(spinlock_t) 942
24.2.5 读写自旋锁(rwlock_t) 946
24.2.6 使用“锁定”技术的注意事项 949
24.3 消除竞态的非“锁定”方法 949
24.3.1 免锁算法 949
24.3.2 原子操作 950
24.3.3 位操作 951
24.3.4 顺序锁 952
24.3.5 读-复制-更新(Read-Copy-Update,RCU) 954
第25章 Linux设备驱动程序 958
本章讲解了Linux内核第四大核心组件“设备驱动”的原理和实现内幕。同时还总结归纳了编写各种设备驱动程序的方法和步骤。
25.1 设备驱动程序概述 958
25.1.1 设备驱动程序组成部分 959
25.1.2 设备号 959
25.1.3 设备文件 960
25.1.4 编写设备驱动程序的关键 961
25.2 字符设备驱动程序 961
25.2.1 字符设备相关数据结构 961
25.2.2 字符设备相关全局变量 963
25.2.3 字符设备驱动程序全局初始化 963
25.2.4 为字符设备分配设备号 964
25.2.5 注册字符设备驱动程序 968
25.2.6 字符设备的操作方法 971
25.2.7 用户对字符设备驱动程序的调用过程 972
25.2.8 如何编写字符设备驱动程序 974
25.2.9 关于TTY设备驱动程序 974
25.2.10 控制台设备驱动程序 975
25.3 块设备驱动程序 986
25.3.1 块设备相关数据结构 986
25.3.2 块设备相关宏定义 997
25.3.3 块设备相关全局变量 999
25.3.4 块设备驱动程序全局初始化 1004
25.3.5 为块设备分配主设备号 1006
25.3.6 注册块设备驱动程序 1009
25.3.7 块设备驱动程序的操作方法 1017
25.3.8 调用块设备驱动程序过程 1017
25.3.9 I/O调度 1031
25.3.10 如何编写块设备驱动程序 1032
25.4 网络设备驱动程序 1033
25.4.1 网络设备驱动程序概述 1033
25.4.2 网络设备相关数据结构 1034
25.4.3 网络设备相关宏定义 1044
25.4.4 网络设备相关全局变量 1045
25.4.5 创建net_device结构 1046
25.4.6 注册网络设备 1048
25.4.7 网络设备的操作方法 1050
25.4.8 网络设备中断服务程序 1051
25.4.9 如何编写网络设备驱动程序 1051
25.5 PCI设备驱动程序 1052
25.5.1 PCI接口定义 1053
25.5.2 PCI设备的三个地址空间 1057
25.5.3 PCI总线仲裁 1058
25.5.4 PCI设备编号 1059
25.5.5 如何访问PCI配置空间 1059
25.5.6 如何配置PCI设备 1061
25.5.7 PCI驱动程序相关数据结构 1062
25.5.8 PCI驱动程序相关宏定义 1068
25.5.9 PCI驱动程序相关全局变量 1068
25.5.10 Bootloader和内核做的事 1069
25.5.11 PCI驱动程序注册 1069
25.5.12 PCI驱动程序接口函数 1071
25.5.13 如何编写PCI驱动程序 1072
第4部分 Linux内核开发高级指南
第26章 Linux系统参数设置 1076
从本章开始的后续章节主要讲解了比较高级或者平时较少关注的Linux内核方面的知识,本章讲解了Linux中的4种系统参数格式和设置方法。
26.1 旗语系统参数(tag) 1076
26.1.1 与旗语系统参数相关数据结构和全局变量 1076
26.1.2 旗语系统参数说明 1082
26.1.3 旗语系统参数设置方法 1084
26.2 前期命令行设置的系统参数 1084
26.2.1 与前期命令行系统参数相关数据结构和全局变量 1084
26.2.2 前期命令行设置的系统参数说明 1085
26.2.3 前期命令行系统参数设置方法 1086
26.2.4 如何添加自己的前期命令行设置的系统参数 1087
26.3 老式命令行系统参数 1087
26.3.1 与老式命令行系统参数相关数据结构和全局变量 1087
26.3.2 老式命令行设置的系统参数说明 1088
26.3.3 老式命令行设置的系统参数设置方法 1089
26.3.4 如何添加自己的老式命令行设置的系统参数 1089
26.4 命令行系统参数 1089
26.4.1 与命令行系统参数相关数据结构和全局变量 1089
26.4.2 命令行设置的系统参数说明 1090
26.4.3 命令行设置的系统参数设置方法 1090
第27章 Linux内核调试 1091
本章介绍了Linux内核的调试方法。
27.1 打开Linux内核及其各模块自带的调试开关 1091
27.2 内核剖析(Profiling) 1093
27.3 通过打印调试(printk) 1095
27.3.1 关于printk() 1095
27.3.2 内核信息级别 1096
27.3.3 打印速度限制 1097
27.3.4 控制台重定向 1098
27.4 使用proc文件系统调试 1098
27.5 oops消息 1098
27.6 通过跟踪命令strace调试 1099
27.7 使用gdb、kdb、kgdb调试 1099
第28章 Linux内核移植 1101
本章介绍了Linux内核的移植方法。
第29章 Linux内核优化 1104
本章介绍了Linux内核的优化方法。
29.1 编译优化 1104
29.2 根据CPU特性进行优化 1105
29.3 对内核进行裁减 1105
29.4 优化系统内存配置 1106
29.5 优化系统启动过程以缩减系统启动时间 1106
29.6 内存映射优化 1107
29.7 工具软件辅助优化 1107
第30章 Linux定时器 1109
本章介绍了Linux内核的软件定时器。
30.1 定时器相关数据结构 1109
30.2 定时器相关宏定义 1111
30.3 定时器相关全局变量 1112
30.4 定时器和时钟初始化 1113
30.5 获取系统时间 1114
30.6 延迟函数 1115
30.7 与定时器相关系统调用 1115
30.8 使用定时器方法 1116
第31章 杂项 1117
本章介绍了PER_CPU变量以及Linux中的数据类型定义。
31.1 per_cpu变量 1117
31.2 Linux中的数据类型定义 1118
第32章 编译链接文件说明 1119
本章注释了ARM处理器系统中Linux内核的链接文件,以帮助读者了解编译出来的Linux内核各区段在内存中的存放位置。
参考文献 1125

⑦ Linux驱动程序开发实例的目录

前言
第1章 Linux设备驱动程序模型 1
1.1 设备驱动程序基础 1
1.1.1 驱动程序的概念 1
1.1.2 驱动程序的加载方式 2
1.1.3 编写可加载模块 3
1.1.4 带参数的可加载模块 5
1.1.5 设备驱动程序的分类 6
1.2 字符设备驱动程序原理 7
1.2.1 file_operations结构 7
1.2.2 使用register_chrdev注册字符
设备 9
1.2.3 使用cdev_add注册字符设备 11
1.2.4 字符设备的读写 13
1.2.5 ioctl接口 14
1.2.6 seek接口 16
1.2.7 poll接口 18
1.2.8 异步通知 22
1.3 proc文件系统 24
1.3.1 proc文件系统概述 24
1.3.2 seq_file机制 25
1.3.3 使用proc文件系统 27
1.4 块设备驱动程序 32
1.4.1 Linux块设备驱动程序原理 32
1.4.2 简单的块设备驱动程序实例 35
1.5 网络设备驱动程序 39
1.5.1 网络设备的特殊性 39
1.5.2 sk_buff结构 40
1.5.3 Linux网络设备驱动程序架构 42
1.5.4 虚拟网络设备驱动程序实例 46
1.6 Linux 2.6设备管理机制 50
1.6.1 kobject和kset 50
1.6.2 sysfs文件系统 51
1.6.3 设备模型层次 52
1.6.4 platform的概念 54
第2章 Linux内核同步机制 58
2.1 锁机制 58
2.1.1 自旋锁 58
2.1.2 读写锁 60
2.1.3 RCU 61
2.2 互斥 64
2.2.1 原子操作 64
2.2.2 信号量 65
2.2.3 读写信号量 67
2.3 等待队列 68
2.3.1 等待队列原理 68
2.3.2 阻塞式I/O实例 68
2.3.3 完成事件 70
2.4 关闭中断 71
第3章 内存管理与链表 72
3.1 物理地址和虚拟地址 72
3.2 内存分配与释放 72
3.3 IO端口到虚拟地址的映射 73
3.3.1 静态映射 73
3.3.2 动态映射 75
3.4 内核空间到用户空间的映射 76
3.4.1 内核空间到用户空间的地址
映射原理 76
3.4.2 mmap地址映射实例 78
3.5 内核链表 80
3.5.1 Linux内核中的链表 80
3.5.2 内核链表实例 81
第4章 延迟处理 83
4.1 内核线程 83
4.2 软中断机制 85
4.2.1 软中断原理 85
4.2.2 tasklet 87
4.3 工作队列 89
4.3.1 工作队列原理 89
4.3.2 工作队列实例 91
4.4 内核时间 92
4.4.1 Linux中的时间概念 92
4.4.2 Linux中的延迟 93
4.4.3 内核定时器 93
第5章 简单设备驱动程序 96
5.1 寄存器访问 96
5.1.1 S3C6410地址映射 96
5.1.2 S3C6410看门狗驱动程序实例 98
5.1.3 S3C6410蜂鸣器驱动程序实例 102
5.2 电平控制 107
5.2.1 S3C6410 LED驱动程序实例 107
5.2.2 扫描型S3C6410按键驱动
程序实例 109
5.3 时序产生 112
5.3.1 时序图原理 112
5.3.2 AT24C02芯片原理 112
5.3.3 AT24C02驱动程序开发实例 115
5.4 硬中断处理 123
5.4.1 硬中断处理原理 123
5.4.2 中断型S3C6410按键驱动
程序实例 127
5.5 Linux I/O端口控制 132
5.5.1 Linux I/O端口读写 132
5.5.2 在应用层访问Linux I/O
端口 133
5.5.3 /dev/port设备 134
第6章 深入Linux内核 135
6.1 嵌入式Linux系统构成 135
6.2 Linux内核导读 136
6.2.1 Linux内核组成 136
6.2.2 Linux的代码结构 137
6.2.3 内核Makefile 138
6.2.4 S3C6410硬件初始化 139
6.3 Linux文件系统 141
6.3.1 虚拟文件系统 141
6.3.2 根文件系统 143
6.3.3 文件系统加载 143
6.3.4 ext3文件系统 145
6.4 Flash文件系统 145
6.4.1 MTD设备 145
6.4.2 MTD字符设备 148
6.4.3 MTD块设备 150
6.4.4 cramfs文件系统 153
6.4.5 JFFS2文件系统 153
6.4.6 YAFFS文件系统 155
6.4.7 文件系统总结 156
6.5 Linux内核移植 156
6.5.1 体系配置 156
6.5.2 添加yaffs2 157
6.5.3 Nand flash驱动程序移植 157
6.5.4 配置启动参数 159
6.5.5 移植RTC驱动程序 160
6.6 根文件系统制作 162
6.6.1 Busybox 162
6.6.2 shell基础 165
6.6.3 根文件系统构建实例 166
6.7 udev模型 167
6.7.1 udev模型原理 167
6.7.2 mdev的使用 167
第7章 I2C总线驱动程序 169
7.1 Linux的I2C驱动程序架构 169
7.1.1 I2C适配器 169
7.1.2 I2C算法 170
7.1.3 I2C驱动程序结构 170
7.1.4 I2C从设备 171
7.1.5 i2c-dev设备层 171
7.2 Linux I2C驱动程序开发 174
7.2.1 S3C2410X的I2C控制器 174
7.2.2 S3C2410X的I2C驱动程序
分析 175
7.3 S3C2410的I2C访问实例 182
7.4 I2C客户端驱动程序 185
第8章 TTY与串口驱动程序 190
8.1 TTY概念 190
8.2 Linux TTY驱动程序体系 190
8.2.1 TTY驱动程序调用关系 190
8.2.2 TTY驱动程序原理 191
8.3 线路规程 194
8.4 串口驱动程序与TTY 196
8.4.1 串口设备驱动程序原理 196
8.4.2 S3C6410的串口驱动程序
实例 199
8.5 TTY应用层 202
第9章 网络设备驱动程序 205
9.1 DM9000网卡驱动程序
开发 205
9.1.1 DM9000原理 205
9.1.2 DM9000X驱动程序分析 207
9.1.3 DM9000网口驱动程序移植 215
9.2 NFS根文件系统搭建 219
9.2.1 主机配置 219
9.2.2 NFS根文件系统搭建实例 220
9.3 netlink Socket 224
9.3.1 netlink机制 224
9.3.2 netlink应用层编程 228
9.3.3 netlink驱动程序实例 229
第10章 framebuffer驱动程序 232
10.1 Linux framebuffer驱动
程序原理 232
10.1.1 framebuffer核心数据结构 232
10.1.2 framebuffer操作接口 234
10.1.3 framebuffer驱动程序的文件
接口 236
10.1.4 framebuffer驱动程序框架 236
10.2 S3C6410 显示控制器 238
10.3 S3C6410 LCD驱动程序实例 243
10.4 framebuffer应用层 250
10.5 Qt4界面系统移植 251
第11章 输入子系统驱动程序 253
11.1 Linux输入子系统概述 253
11.1.1 input_dev结构 253
11.1.2 输入事件 255
11.2 input_handler 256
11.2.1 Input Handler层 256
11.2.2 常用的Input Handler 259
11.3 输入设备应用层 261
11.4 键盘输入设备驱动程序
实例 262
11.5 event接口 267
11.6 触摸屏驱动程序实例 270
11.6.1 S3C6410触摸屏控制器 270
11.6.2 S3C6410触摸屏驱动程序
设计 273
11.7 触摸屏校准 282
11.7.1 触摸屏校准原理 282
11.7.2 利用TSLIB库校准触摸屏 282
第12章 USB驱动程序 284
12.1 USB体系概述 284
12.1.1 USB系统组成 284
12.1.2 USB主机 284
12.1.3 USB设备逻辑层次 285
12.2 Linux USB驱动程序体系 287
12.2.1 USB总体结构 287
12.2.2 USB设备驱动程序 287
12.2.3 主机控制器驱动程序 288
12.2.4 USB请求块urb 289
12.2.5 USB请求块的填充 291
12.3 S3C6410 USB主机控制器
驱动程序 292
12.3.1 USB主机控制器驱动程序
分析 292
12.3.2 S3C6410 USB驱动程序
加载 294
12.4 USB键盘设备驱动程序
分析 296
12.5 USB Gadget驱动程序 301
12.5.1 Linux USB Gadget驱动程序 301
12.5.2 Linux USB Gadget驱动程序
实例 302
第13章 音频设备驱动程序 303
13.1 ALSA音频体系 303
13.2 ALSA驱动层API 304
13.2.1 声卡和设备管理 304
13.2.2 PCM API 304
13.2.3 控制与混音API 305
13.2.4 AC97 API 306
13.2.5 SOC层驱动 307
13.3 ALSA驱动程序实例 308
13.3.1 S3C6410的AC97控制
单元 308
13.3.2 S3C6410声卡电路原理 309
13.3.3 S3C6410的数字音频接口 310
13.3.4 wm9713的数字音频接口 313
13.4 ALSA音频编程接口 316
13.4.1 ALSA PCM接口实例 316
13.4.2 ALSA MIDI接口实例 320
13.4.3 ALSA mixer接口实例 321
13.4.4 ALSA timer接口实例 322
第14章 video4linux2视频
驱动程序 327
14.1 video4linux2驱动程序
架构 327
14.1.1 video4linux2驱动程序的
注册 327
14.1.2 v4l2_fops接口 331
14.1.3 常用的结构 332
14.1.4 video4linux2的ioctl函数 333
14.2 S3C6410摄像头驱动程序
分析 333
14.2.1 电路原理 333
14.2.2 驱动程序分析 334
14.3 video4linux2应用层实例 339
第15章 SD卡驱动程序 346
15.1 Linux SD卡驱动程序体系 346
15.1.1 SD卡电路原理 346
15.1.2 MMC卡驱动程序架构 347
15.1.3 MMC卡驱动程序相关
结构 347
15.1.4 MMC卡块设备驱动程序 350
15.1.5 SD卡主机控制器接口驱动
程序 356
15.2 S3C6410 SD卡控制器驱动
程序分析 360
15.2.1 电路原理 360
15.2.2 S3C6410 SDHCI驱动
程序原理 360
15.2.3 SD卡的加载实例 364
参考文献 366

阅读全文

与字符驱动设备编译源码目录相关的资料

热点内容
cad命令缩小 浏览:154
linux发展史 浏览:629
服务器选用什么CPU比较好 浏览:334
明星怎么宣传安卓 浏览:953
8255芯片编程 浏览:65
java文件bat运行 浏览:747
java常见笔试 浏览:529
360程序员模式 浏览:363
AQS算法的查询树构造 浏览:329
小猪微信营销源码 浏览:12
阿里云服务器能连接打印机吗 浏览:175
命令行参考 浏览:281
怎么初步认识编程 浏览:208
为什么程序员都喜欢谷歌 浏览:891
压缩性骨拆能自愈吗 浏览:277
安卓怎么设置游戏画面 浏览:114
k线上写字源码 浏览:457
单击按钮保存资料源码 浏览:354
华为gt加密卡 浏览:213
河北超融合服务器厂家云主机 浏览:894