❶ 傅立叶变换用在时间序列降维有用吗
推荐用高斯混合模型
❷ 请问当今比较流行的数据降维算法有哪些
这个要看你的需求和数据的data distribution,找到最合适的算法解决你的问题。
如果数据分布比较简单,线性映射降维就够了,比如PCA、ICA。
如果数据分布比较复杂,可能需要用到manifold learning,具体算法比如SOM、MDS、ISOMAP、LLE,另外deep learning也可以用来做降维。
❸ 求大神简述一下LLE算法(或降维算法)在模式识别和数据挖掘中是怎样被应用的呢,谢谢
关于LLE算法具体的理论部分你可参考http://www.pami.sjtu.e.cn/people/xzj/introcelle.htm
Locally linear embedding (LLE),使用这种算法可以进行非线性降维,关键是其能够使降维后的数据保持原有拓扑结构
先给出一张下面算法得到的图 ,图中第一幅
LLE算法可以归结为三步:
(1)寻找每个样本点的k个近邻点;
(2)由每个样本点的近邻点计算出该样本点的局部重建权值矩阵;
(3)由该样本点的局部重建权值矩阵和其近邻点计算出该样本点的输出值。
为原始数据,第三个为降维后的数据,可以看出处理后的低维数据保持了原有的拓扑结构。
另,本人对LLE算法不是很熟悉,在此介绍一下其他降维算法的使用,以SVD算法为例。
电影推荐。
(1)假设现在有一个用户和电影评分的二维矩阵,矩阵内容是用户对电影的评分,现有得知某个用户对部分电影的评分,由此为该用户推荐他可能喜欢的电影。
(2)假设用户有100W,电影有100W部,那么对于任意一种推荐算法来说,这个数据量都很大,该问题无法在单机上进行运算解决;
(3)这100W维特征中必然存在一些几乎不重要的特征,这时,我们就需要用降维算法进行降维,降维的目的就是去掉大量的不重要的特征,以简化运算;
(4)在此例中,可以使用SVD(或SVD++)算法对矩阵进行降维
图片相似度
(1)通常,进行图片相似度判断首先会将图片通过傅里叶变换转换成数值代表的矩阵,矩阵代表着该图片,一般来说矩阵维数越高越精确
(2)同样,维数过高的情况下,相似度计算成本很高,因此同样需要降维,在图片相似度识别中常用的降维算法是PCA算法;
总之,降维的目的就是减少特征的维数,减少运算的成本。
以上皆为我的拙见,如有疑义请指正。
❹ 降维算法里面的“维”是指一维数组还是矩阵,到底是什么意思求朋友指导
都可以啊亲,,,看你的数据咯~你的原始数据是向量,降维自然就是低维向量,你的数据是矩阵,降维就可以降成低阶矩阵,,,流形之类的结构降维本质上等价于其上的切空间降维,降维手段不仅可以通过邻域展开,也可以通过切空间内的数学量降维,对于向量空间来说,可用的实在太多了,加油~~
❺ 如何实现降维处理
降维方法分为线性核非线性降维,非线性降维又分为基于核函数和基于特征值的方法。
线性降维方法:PCA ICALDA LFA LPP(LE的线性表示)
于核函数的非线性降维方法:KPCA KICAKDA
基于特征值的非线性降维方法(流型学习):ISOMAP LLE LE LPP LTSA MVU
❻ 降维的概念
若原特征空间是D维的,现希望降至d维的 降维方法分为线性核非线性降维,非线性降维又分为基于核函数和基于特征值的方法。
1、线性降维方法:PCA 、ICA LDA、LFA、LPP(LE的线性表示)
2、非线性降维方法:
(1)基于核函数的非线性降维方法:KPCA 、KICA、KDA
(2)基于特征值的非线性降维方法(流型学习):ISOMAP、LLE、LE、LPP、LTSA、MVU 1、LLE(Locally Linear Embedding)算法(局部线性嵌入):
每一个数据点都可以由其近邻点的线性加权组合构造得到。
算法的主要步骤分为三步:
(1)寻找每个样本点的k个近邻点(k是一个预先给定的值);
(2)由每个样本点的近邻点计算出该样本点的局部重建权值矩阵;
(3)由该样本点的局部重建权值矩阵和其近邻点计算出该样本点的输出值,定义一个误差函数。
❼ 机器学习中的降维算法和梯度下降法
机器学习中有很多算法都是十分经典的,比如说降维算法以及梯度下降法,这些方法都能够帮助大家解决很多问题,因此学习机器学习一定要掌握这些算法,而且这些算法都是比较受大家欢迎的。在这篇文章中我们就给大家重点介绍一下降维算法和梯度下降法。
降维算法
首先,来说一说降维算法,降维算法是一种无监督学习算法,其主要特征是将数据从高维降低到低维层次。在这里,维度其实表示的是数据的特征量的大小,当特征量大的话,那么就给计算机带来了很大的压力,所以我们可以通过降维计算,把维度高的特征量降到维度低的特征量,比如说从4维的数据压缩到2维。类似这样将数据从高维降低到低维有两个好处,第一就是利于表示,第二就是在计算上也能带来加速。
当然,有很多降维过程中减少的维度属于肉眼可视的层次,同时压缩也不会带来信息的损失。但是如果肉眼不可视,或者没有冗余的特征,这怎么办呢?其实这样的方式降维算法也能工作,不过这样会带来一些信息的损失。不过,降维算法可以从数学上证明,从高维压缩到的低维中最大程度地保留了数据的信息。所以说,降维算法还是有很多好处的。
那么降维算法的主要作用是什么呢?具体就是压缩数据与提升机器学习其他算法的效率。通过降维算法,可以将具有几千个特征的数据压缩至若干个特征。另外,降维算法的另一个好处是数据的可视化。这个优点一直别广泛应用。
梯度下降法
下面我们给大家介绍一下梯度下降法,所谓梯度下降法就是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。好比将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快;当然解决问题的方法有很多,梯度下降只是其中一个,还有很多种方法。
在这篇文章中我们给大家介绍了关于机器算法中的降维算法以及梯度下降法,这两种方法是机器学习中十分常用的算法,降维算法和梯度下降法都是十分实用的,大家在进行学习机器学习的时候一定要好好学习这两种算法,希望这篇文章能够帮助大家理解这两种算法。
❽ 降维的方法主要有
在分析高维数据时,降维(Dimensionality rection,DR)方法是我们不可或缺的好帮手。
作为数据去噪简化的一种方法,它对处理大多数现代生物数据很有帮助。在这些数据集中,经常存在着为单个样本同时收集数百甚至数百万个测量值的情况。
由于“维度灾难”(curse of dimensionality)的存在,很多统计方法难以应用到高维数据上。虽然收集到的数据点很多,但是它们会散布在一个庞大的、几乎不可能进行彻底探索的高维空间中。
通过降低数据的维度,你可以把这个复杂棘手的问题变得简单轻松。除去噪音但保存了所关注信息的低维度数据,对理解其隐含的结构和模式很有帮助。原始的高维度数据通常包含了许多无关或冗余变量的观测值。降维可以被看作是一种潜在特征提取的方法。它也经常用于数据压缩、数据探索以及数据可视化。
虽然在标准的数据分析流程中已经开发并实现了许多降维方法,但它们很容易被误用,并且其结果在实践中也常被误解。
本文为从业者提供了一套有用的指南,指导其如何正确进行降维,解释其输出并传达结果。
技巧1:选择一个合适的方法
当你想从现有的降维方法中选择一种进行分析时,可用的降维方法的数量似乎令人生畏。事实上,你不必拘泥于一种方法;但是,你应该意识到哪些方法适合你当前的工作。
降维方法的选择取决于输入数据的性质。比如说,对于连续数据、分类数据、计数数据、距离数据,它们会需要用到不同的降维方法。你也应该用你的直觉和相关的领域知识来考虑收集到的数据。通常情况下,观测可以充分捕获临近(或类似)数据点之间的小规模关系,但并不能捕获远距离观测之间的长期相互作用。对数据的性质和分辨率的考虑是十分重要的,因为降维方法可以还原数据的整体或局部结构。一般来说,线性方法如主成分分析(Principal Component Analysis, PCA)、对应分析(Correspondence Analysis, CA)、多重对应分析(Multiple Correspondence Analysis, MCA)、经典多维尺度分析(classical multidimensional scaling, cMDS)也被称为主坐标分析(Principal Coordinate Analysis, PCoA) 等方法,常用于保留数据的整体结构;而非线性方法,如核主成分分析(Kernel Principal Component Analysis, Kernel PCA)、非度量多维尺度分析(Nonmetric Multidimensional Scaling, NMDS)、等度量映射(Isomap)、扩散映射(Diffusion Maps)、以及一些包括t分布随机嵌入(t-Distributed Stochastic Neighbor Embedding, t-SNE)在内的邻近嵌入技术,更适合于表达数据局部的相互作用关系。NE技术不会保留数据点之间的长期相互作用关系,其可视化报告中的非临近观测组的排列并没有参考价值。因此,NE的图表不应该被用于数据的大规模结构的推测
❾ 谁能给我详细讲一下拉普拉斯降维的算法步骤啊
在数学以及物理中, 拉普拉斯算子或是拉普拉斯算符(英语:Laplace operator, Laplacian)是一个微分算子,通常写成 Δ 或 ∇²;这是为了纪念皮埃尔-西蒙·拉普拉斯而命名的。拉普拉斯算子有许多用途,此外也是椭圆型算子中的一个重要例子。在物理中,常用于波方程的数学模型、热传导方程以及亥姆霍兹方程。在静电学中,拉普拉斯方程和泊松方程的应用随处可见。在量子力学中,其代表薛定谔方程式中的动能项。在数学中,经拉普拉斯算子运算为零的函数称为调和函数;拉普拉斯算子是霍奇理论的核心,并且是德拉姆上同调的结果。