导航:首页 > 源码编译 > 逆矩阵四则运算法则

逆矩阵四则运算法则

发布时间:2024-04-03 18:59:39

A. 矩阵的逆运算规则求讲解

求乘积的逆矩阵的规律是,每个矩阵都要写出逆矩阵,但乘积的次序完全颠倒,具体见下图:

矩阵相乘,其几何意义就是两个线性变换的复合,比如A矩阵表示旋转变换,B矩阵表示伸长变换,AB就是伸长加旋转的总变换:同时伸长和旋转。

矩阵分解将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

简介

将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。

B. 矩阵的四则运算是啥

矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置:

加法

矩阵的加法满足运算律(A,B,C都是同型矩阵):应该注意的是只有同型矩阵之间才可以进行加法

数乘

矩阵的加减法和矩阵的数乘合称矩阵的线性运算。

转置

把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。

(2)逆矩阵四则运算法则扩展阅读:

在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。

关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。

矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。

无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵

参考资料来源:网络-矩阵

C. 行列式转置的运算法则

行列式转置的运算法则:

|A|+|B|和|A+B|一般不相等。

|A|×|B|和|A×B|相等。

还有个规则是:|A'|=|A|。

取行列式后就是一个数,就把它当作一个数就行了。

最重要的一个规则就是:|A|×|B|=|A×B|。

|A'|=|A| 指的是A的转置和A的行列式相同。

A的转置用A'或AT表示。

若|A|不等于零,则A的逆矩阵存在,用C来表示。

那么有AC=E其中E为单位矩阵。

两边同时取行列式有|AC|=1,|A||C|=1,即|C|=1/|A|。

逆矩阵的行列式与原矩阵的行列式是倒数关系。

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

D. 请问矩阵加减乘除如何计算

加法运算:两个矩阵的加是矩阵中对应的元素相加,相加的前提是:两个矩阵要是通行矩阵,即具有相同的行和列数。如:矩阵A=[1 2],B=[2 3] ,A+B=[1+2 2+3]=[3 5]。

减法运算:两个矩阵相减,跟加法类似。

乘法运算:两个矩阵要可以相乘,必须是A矩阵的列数B矩阵的行数相等,才可以进行乘法,矩阵乘法的原则是,A矩阵的第i行中的元素分别与B矩阵中的第j列中的元素相乘再求和,得到的结果就是新矩阵的第i行第j列的值。

除法运算:一般不说矩阵的除法。都是讲的矩阵求逆。

(4)逆矩阵四则运算法则扩展阅读:

矩阵乘法的注意事项

1、当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。

2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

基本性质

乘法结合律: (AB)C=A(BC)。

乘法左分配律:(A+B)C=AC+BC 。

乘法右分配律:C(A+B)=CA+CB 。

对数乘的结合性k(AB)=(kA)B=A(kB)。

转置 (AB)T=BTAT.

矩阵乘法一般不满足交换律。

*注:可交换的矩阵是方阵。

计算矩阵的除法,先将被除的矩阵先转化为它的逆矩阵,再将前面的矩阵和后面的矩阵的逆矩阵相乘。

那么,一个矩阵的逆矩阵的求解方法是:先把一个单位矩阵放在目的矩阵的右边,然后把左边的矩阵通过初等行变换转换为单位矩阵,此时右边的矩阵就是我们要求的逆矩阵。

我们再通过举一个实例来说明矩阵的除法的具体计算方法。

先把单位矩阵放在矩阵A的右边并放在同一个矩阵里边。现用第二行和第三行分别减去第一行的3倍和-1倍。

阅读全文

与逆矩阵四则运算法则相关的资料

热点内容
怎样加密自己的密码 浏览:521
安卓怎么关权限保护隐私 浏览:390
海牛微视app怎么用 浏览:70
单片机怎样选变压器 浏览:829
癌症pdf 浏览:725
云服务器镜像批量部署环境 浏览:683
安卓手机浏览器能访问什么网站 浏览:254
找不到网站的服务器ip地址该如何解决 浏览:743
算法十个数降序排列 浏览:95
基于单片机的老年人健康监测系统 浏览:706
python入门经典pdf下载 浏览:17
东芝变频2p空调压缩机 浏览:227
自家wifi怎么能加密 浏览:644
红米k40加密门禁卡 浏览:847
什么样的源码好看 浏览:156
手机主服务器有什么用 浏览:612
程序编写命令 浏览:597
android发送心跳包 浏览:385
指标源码和原理 浏览:700
汽车空调压缩吸盘 浏览:208