① 渐进复杂度的定义
定义
对于一个算法,假设其问题的输入大小为n,那么我们可以用 O(f(n)) 来表示其算法复杂度(time complexity)。那么,渐进时间复杂度(asymptotic time complexity)就是当n趋于无穷大的时候,f(n) 得到的极限值。
可以理解为:我们通过计算得出一个算法的运行时间 T(n), 与T(n)同数量级的即幂次最高的O(F(n))即为这个算法的时间复杂度。例如:某算法的运行时间T(n) = n+10与n是同阶的(同数量级的),所以称T(n)=O(n)为该算法的时间复杂度。
算法的渐进分析就是要估计:n逐步增大时资源开销T(n)的增长趋势。
② 如何理解算法中的渐进符号
算法是在有限步骤内求解某一问题所使用的一组定义明确的规则。通俗点说,就是计算机解题的过程。在这个过程中,无论是形成解题思路还是编写程序,都是在实施某种算法。前者是推理实现的算法,后者是操作实现的算法。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
③ 请问在算法设计与分析里什么是渐近复杂度
渐进复杂度通俗地讲就是:假设需要计算机解决的某个问题为 n,则该问题的渐进复杂度就是需要估计:当 n 逐步增大时,系统资源开销 T(n) 的增长趋势。
渐进复杂度就是当 n 趋于无穷大的时候,O(n)得到的极限值。