❶ 补码乘除运算 用Booth算法计算-4×3的4位补码乘法运算,要求写出每一步运算过程及运算结果
4=0100(2^2*1).3=0011 (2^0*1+2^1*1) 4*3=1100(2^3*1+2^2*1) 它就是整码. 整码 1100=0011(反码) 反码0011=0100即4( 补码)(补码就是在反码基础上再加1得到)
❷ 画出实现Booth算法的运算器框图,
http://wenku..com/link?url=-G###
第25页 自己看吧
❸ 关于booth算法乘法的问题 求步骤 我的结果为什么移位相加完是11110011010
比较好的带符号数乘法的方法是布斯(Booth)算法.它采用相加和相减的操作计算补码数据的乘积.Booth算法对乘数从低位开始判断,根据两个数据位的情况决定进行加法、减法还是仅仅移位操作.判断的两个数据位为当前位及其右边的位(初始时需要增加一个辅助位0),移位操作是向右移动.在上例中,第一次判断被乘数0110中的最低位0以及右边的位(辅助位0),得00;所以只进行移位操作;第二次判断0110中的低两位,得10,所以作减法操作并移位,这个减法操作相当于减去2a的值;第三次判断被乘数的中间两位,得11,于是只作移位操作;第四次判断0110中的最高两位,得01,于是作加法操作和移位,这个加法相当于加上8a的值,因为a的值已经左移了三次.
一般而言,设y=y0,yly2…yn为被乘数,x为乘数,yi是a中的第i位(当前位).根据yj与yi+1的值,Booth算法表示如下表所示,其操作流程如下图所示.在Booth算法中,操作的方式取决于表达式(yi+1-yi)的值,这个表达式的值所代表的操作为:
0 无操作
+1 加x
-1 减x
Booth算法操作表示
yi yi+1 操作 说明
0 0 无 处于0串中,不需要操作
0 1 加x 1串的结尾
1 0 减x 1串的开始
1 1 无 处于1串中,不需要操作
乘法过程中,被乘数相对于乘积的左移操作可表示为乘以2,每次循环中的运算可表示为对于x(yi+1-yi)2^31-i项的加法运算(i=3l,30,…,1,0).这样,Booth算法所计算的结果 可表示为:
x×(0-y31)×2^0
+x×(y31-y30)×2^1
+x×(y30-y29)×2^2
…
[1]+x×(y1-y0)×2^31
=x×(-y0×231 +y1×2^30 +y2×2^29+y31×2^0)
=x×y
例:用Booth算法计算2×(-3).
[2]补=0010, [-3]补=1101,在乘法开始之前,R0和R1中的初始值为0000和1101,R2中的值为0010.
在乘法的第一个循环中,判断R1的最低位和辅助位为10,所以进入步骤1c,将R0的值减去R2的值,结果1110送人R0,然后进入第二步,将R0和Rl右移一位,R0和R1的结果为11110110,辅助位为l.
在第二个循环中,首先判断Rl的最低位和辅助位为0l,所以进入步骤1b,作加法,R0+R2=1111+0010,结果0001送入R0,这时R0R1的内容为0001 0110,在第二步右移后变为0000 1011,辅助位为0.
在第三次循环中,判断位为10,进入步骤lc,R0减去R2,结果1110送入R0,R1不变;步骤2移位后R0和R1的内容为1111 01011,辅助位为1.
第四次循环时,因两个判断位为11,所以不作加减运算,向右移位后的结果为1111 1010,这就是运算结果(—6).
这个乘法的过程描述如下表所示,表中乘积一栏表示的是R0、R1的内容以及一个辅助位P,黑体字表示对两个判断位的判断.
用Booth补码一位乘法计算2 ×(-3)的过程
循环
步骤
乘积(R0,R1, P)
0
初始值
0000 1101 0
第一次循环
1c:减0010
1110 1101 0
2:右移1位
1111 0110 1
第二次循环
1b:加0010
0001 0110 1
2:右移1位
0000 1011 0
第三次循环
1c:减0010
1110 1011 0
2:右移1位
1111 0101 1
第四次循环
1a:无操作
1111 0101 1
2:右移1位
1111 1010 1
4.补码两位乘
补码两位乘运算规则是根据补码一位乘的规则,把比较yiyi+1的状态应执行的操作和比较yi-1yi 的状态应执行的操作合并成一步,便可得出补码两位乘的运算方法.
补码两位乘法运算规则如下
判断位yi-1y iyi+1
操作内容
000
[zi+1]补=2-2[zi]补
001
[zi+1]补=2-2{[zi]补+[x]补}
010
[zi+1]补=2-2{[zi]补+[x]补}
011
[zi+1]补=2-2{[zi]补+2[x]补}
100
[zi+1]补=2-2{[zi]补+2[-x]补}
101
[zi+1]补=2-2{[zi]补+ [-x]补}
110
[zi+1]补=2-2{[zi]补+-x}补}
111
[zi+1]补=2-2[zi]补
由上表可见,操作中出现加2[x]补和加2[-x]补,故除右移两位的操作外,还有被乘数左移一位的操作;而加2[x]补和加2[-x]补,都可能因溢出而侵占双符号位,故部分积和被乘数采用三位符号位.
例:[x]补=0.0101,[y]补=1.0101 求: [x? y]补.
求解过程如下表所示.其中乘数取两位符号位即11.0101,[-x]补=1.1011取三符号位为111.1011.
部分积
乘数
说 明
000.0000
+ 000.0101
1101010
判断位为010,加[x]补
000.0101
000.0001
+ 000.0101
0111010
→2位
判断位为010,加[x]补
000.0110
000.0001
+ 111.1011
01
1001110
→2位
判断位为110,加[-x]补
111.1100
1001
最后一步不移位,得[x? y]补
故[x? y]补=1.11001001
可见,与补码一位乘相比,补码两位乘的部分积多取一位符号位(共3位),乘数也多取一位符号位(共2位),这是由于乘数每次右移2位,且用3位判断,故采用双符号位更便于硬件实现.可见,当乘数数值位为偶数时,乘数取2位符号位,共需作n/2次移位,最多作n/2+1次加法,最后一步不移位;当n为奇数时,可补0变为偶数位,以简化逻辑操作.也可对乘数取1位符号位,此时共作n/2+1次加法和n/2+1次移位(最后一步移一位).
对于整数补码乘法,其过程与小数乘法完全相同.为了区别于小数乘法,在书写上可将符号位和数值位中间的“.”改为“,”即可.
再补充一道例子,增加一下理解.呵呵
例1.37 设被乘数M=0111(7),乘数Q=0011(3),相乘过程如下:(其中的①②……是我自己加上去的)
A Q Q-1
①00000011 0 初始值
②1001 00110 A=A-M
③110010011右移(第1次循环)
④111001001右移(第2次循环)
⑤010101001A=A+M
⑥001010100右移(第3次循环)
⑦000101010右移(第4次循环)
乘法运算结束后,所得结果共8位,A寄存器中是乘积的高位部分,Q寄存器中是乘积的低位部分,即乘积=0010101=(21)(十进制)
例1.38设被乘数M=0111(7),乘数Q=1101(-3),相乘过程如下:
A QQ-1
000011010初始值
100111010A=A-M
110011101右移(第1次循环)
001111101A=A+M
000111110右移(第2次循环)
101011110A=A-M
110101111右移(第3次循环)
111010111右移(第4次循环)
乘积=11101011=(-21)(十进制)
❹ 计算机组成原理,补码一位乘Booth算法。
详细解答如下:
❺ booth算法的硬件配置A寄存器为什么是n+2位计算机组成原理
A寄存器中存的是部分积,Booth算法的部分积取双符号位。
❻ booth算法中二进制数哪个是高位,哪个是低位
咨询记录 · 回答于2021-07-05
❼ 求用c++实现booth算法的代码,要求输入二进制真值,输出二进制真值,满意大量加分
这个你用算的就好了 四位二进制分别表示8421 看你二进制数用什么表示了
❽ 怎么理解Booth算法
布思算法(booth
algorithm)的简单理解方法:
由于是第一次接触,对于其原理却一无所知,书上的解释以及网上的文章不知是自己才疏学浅还本来就是泛泛而谈,没有让我了解其本质。经过长时间的思考分析,最终找到了一种比较简单的理解方法。
举一个简单的例子,比如说计算×,在这里首先将乘数改写为 -
即
-
---------------------------------------------------
这样根据乘法分配律得×=×(0100)
类似于booth算法的重新编码形式,再将上述算式改写为
×=×0+1
+ × -1 0
最终再将上式合并到一起,可得由booth算法改写后的编码形式: × 0+10000-10
由此可见,乘数的数段"01"可以重新编码为“+1”,数段“10”可以重新编码为“-1”,数段“11”可重新编码为“0”
根据无符号二进制数乘法的过程可知,当乘数段为“00”只是对乘数进行了右移操作,故重新编码为“0”
由于上述推导过程是根据二进制数加减以及乘法分配律推导而来的,故对于由补码表示的负数乘法同样适用
❾ Booth算法的介绍
比较好的带符号数乘法的方法是布斯(Booth)算法。它采用相加和相减的操作计算补码数据的乘积。Booth算法对乘数从低位开始判断,根据两个数据位的情况决定进行加法、减法还是仅仅移位操作。判断的两个数据位为当前位及其右边的位(初始时需要增加一个辅助位0),移位操作是向右移动。
❿ 用Booth算法计算7×(-3).
Booth?
7×(-3)=-21
7×(-3)=(-)*(7*3)=-21