导航:首页 > 源码编译 > 神经网络编译器定点运算

神经网络编译器定点运算

发布时间:2024-04-07 19:55:56

A. NetworkX和Graphscope哪个运算速度更快

近年来,全球大数据进入加速发展时期,数据量呈现指数级爆发式增长,而这些大量数据中不同个体间交互产生的数据以图的形式表现,如何高效地处理这些图数据成为了业界及其关心的问题。很过用普通关系数据无法跑出来的结果,用图数据进行关联分析会显得异常高效。

提到处理图数据,我们首先想到NetworkX,这是网络计算上常用的Python包,可提供灵活的图构建、分析功能。但是我们使用NetworkX跑大规模图数据时,不仅经常碰到内存不足的问题,而且分析速度很慢,究其原因,是NetworkX只支持单机运行。通过网上搜索,新发现了一个名为GraphScope的系统不仅号称兼容NetworkX的API,而且支持分布式部署运行,性能更优。针对GraphScope和NetworkX的处理能力,我们参考图计算中常用的测试框架LDBC,通过一组实验来对比下二者的性能。

一、实验介绍

为了比较两者的计算效率,先用阿里云拉起了配置为8核CPU,32GB内存的四台ECS,设计了三组比较实验,分别是NetworkX单机下的计算性能,GraphScope单机多worker的计算性能以及GraphScope分布式多机多worer的计算性能。

数据上,我们选取了SNAP开源的图数据集twitter,来自 LDBC数据集的datagen-7_5-fb,datagen-7_7-zf和datagen-8_0-fb作为实验数据,以下是数据集的基本信息:

· Twitter: 81,307个顶点,1,768,135条边

· Datagen-7_5-fb: 633,432个顶点,34,185,747条边,稠密图

· Datagen-7_7-zf: 13,180,508个顶点,32,791,267条边,稀疏图

· Datagen-8_0-fb: 1,706,561个顶点,107,507,376条边,这个数据集主要测试两个系统可处理的图规模能力

实验设计上我选择常用的SSSP、BFS、PageRank、WCC算法,以及较高复杂度的All Pair shortest Path length算法,以载图时间,内存占用和计算时间这三个指标为依据,对两个系统进行计算性能的比较。

NetworkX是一个单机系统,在实验中只考虑NetworkX在单机环境下的运行时间;GraphScope支持分布式运行,故进行两个配置,一个是单机4worker,另外一个配置是4台机器,每台机器4个worker。

二、实验结果

首先,GraphScope的载图速度比NetworkX显着提升。

在前三个图数据集中,无论是GraphScope的单机多worker模式,还是GraphScope的分布式模式,载图速度都比NetworkX快:

GraphScope单机模式载图速度平均比NetworkX快5倍,最高纪录——在datagen-7_5-fb上比NetworkX快了6倍。

分布式模式下GraphScope的载图时间比NetworkX平均快了27倍,最高纪录——在datagen-7_7-zf数据集上比NetworkX快了63倍。

在datagen-8_0-fb数据集上,NetworkX因内存溢出无法载图,GraphScope单机多worker和GraphScope分布式载图时间分别为142秒和13.6秒。
————————————————
版权声明:本文为CSDN博主“6979阿强”的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/tanekf6979/article/details/120067176

阅读全文

与神经网络编译器定点运算相关的资料

热点内容
编译器地址8字节对齐 浏览:464
三菱plc编程win1064 浏览:258
高中英语单词pdf 浏览:425
编译原理词法分析常见问题 浏览:197
车小艺app怎么更新 浏览:77
手机app被管控如何移除 浏览:753
51单片机温湿度检测 浏览:575
安卓抖音显示没网络是怎么回事 浏览:817
2d我的世界源码 浏览:618
怎样制作贴天花板的解压球 浏览:337
服务器如何打开苹果 浏览:96
高响应比算法的实现 浏览:848
windows写命令行 浏览:61
腾讯天津数据中心服务器云空间 浏览:974
单片机扫描按键 浏览:386
如何设置google服务器 浏览:696
linuxtrace工具源码 浏览:178
源码第二次开发 浏览:784
如何获取网页php源码 浏览:729
还用飞那么源码 浏览:204