导航:首页 > 源码编译 > 常用算法和数据结构库

常用算法和数据结构库

发布时间:2024-04-11 10:54:02

Ⅰ 数据结构有哪些基本算法

数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科。

可以理解为:程序设计 = 数据结构 + 算法

数据结构算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。

1、输入:一个算法具有零个或者多个输出。以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。后面一句话翻译过来就是,如果一个算法本身给出了初始条件,那么可以没有输出。比如,打印一句话:NSLog(@"你最牛逼!");

2、输出:算法至少有一个输出。也就是说,算法一定要有输出。输出的形式可以是打印,也可以使返回一个值或者多个值等。也可以是显示某些提示。

3、有穷性:算法的执行步骤是有限的,算法的执行时间也是有限的。

4、确定性:算法的每个步骤都有确定的含义,不会出现二义性。

5、可行性:算法是可用的,也就是能够解决当前问题。

数据结果的基本算法有:

1、图搜索(广度优先、深度优先)深度优先特别重要

2、排序

3、动态规划

4、匹配算法和网络流算法

5、正则表达式和字符串匹配

6、三路划分-快速排序

7、合并排序(更具扩展性,复杂度类似快速排序)

8、DF/BF 搜索 (要知道使用场景)

9、Prim / Kruskal (最小生成树)

10、Dijkstra (最短路径算法)

11、选择算法

Ⅱ 面试经典数据结构和算法汇总

如果说数据结构是骨架,那么算法就是灵魂。没了骨架,灵魂没有实体寄托;没了灵魂,骨架也是个空壳。两者相辅相成,缺一不可,在开发中起到了砥柱中流的作用。

现在我对各种数据结构和算法做一总结,对比一下它们的效率

1.数据结构篇
1. 如果让你手写个栈和队列,你还会写吗?
2. 开发了那么多项目,你能自己手写个健壮的链表出来吗?
3. 下次面试若再被问到二叉树,希望你能对答如流!
4. 面试还在被红-黑树虐?看完这篇轻松搞定面试官 !

2.排序算法篇
1. 几个经典的基础排序算法,你还记得吗?
2. 手把手教你学会希尔排序,很简单!
3. 快速排序算法到底有多快?
4. 五分钟教你学会归并排序
5. 简单说下二叉树排序
6. 学会堆排序只需要几分钟
7. 图,这个玩意儿竟然还可以用来排序!

掌握了这些经典的数据结构和算法,面试啥的基本上没什么问题了,特别是对于那些应届生来说。接下来再总结一下不同数据结构和算法的效率问题,做一下对比,这也是面试官经常问的问题。

数据结构常用操作效率对比:

常用排序算法效率的对比:

关于经典的数据结构和算法,就总结到这,本文建议收藏,利用等公交、各种排队之时提升自己。这世上天才很少,懒蛋却很多,你若对得起时间,时间便对得起你。

Ⅲ 数据结构 java开发中常用的排序算法有哪些

排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序

一、冒泡(Bubble)排序

----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。

二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次扫描选择最小项
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。

三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low < high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。

七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j<=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1>kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kj>temp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。

堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;i<G.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。

Ⅳ 数据结构和算法不一样吗

这个肯定是不一样,有区别的。数据是一切能输入计算机中的信息的总和,结构是指数据之间的关系。数据结构就是将数据及其之间的关系有效地存储在计算机中并进行基本操作。
算法是对特定问题求解步骤的一种描述,通俗讲就是解决问题的方法和策略。
但是他们又是相辅相成的。只有数据结构没有算法,相当于只把数据存储到计算机中,而没有有效的方法去处理,就像一幢只有框架的烂尾楼;若只有算法,没有数据结构,就像沙漠里的海市蜃楼,只不过是空中楼阁罢了。

数据结构是算法实现的基础,算法总是要依赖于某种数据结构来实现的。数据结构是数据间的有机关系,而算法是对数据的操作步骤;两者不可分开来谈,不能脱离算法来讨论数据结构,也不能脱离数据结构研究算法。
如果你还不太清楚,或者想知道的更多,可以去了解一下小码哥李明杰。

Ⅳ 一文带你认识30个重要的数据结构和算法

数组是最简单也是最常见的数据结构。它们的特点是可以通过索引(位置)轻松访问元素。

它们是做什么用的?

想象一下有一排剧院椅。每把椅子都分配了一个位置(从左到右),因此每个观众都会从他将要坐的椅子上分配一个号码。这是一个数组。将问题扩展到整个剧院(椅子的行和列),您将拥有一个二维数组(矩阵)。

特性

链表是线性数据结构,就像数组一样。链表和数组的主要区别在于链表的元素不存储在连续的内存位置。它由节点组成——实体存储当前元素的值和下一个元素的地址引用。这样,元素通过指针链接。

它们是做什么用的?

链表的一个相关应用是浏览器的上一页和下一页的实现。双链表是存储用户搜索显示的页面的完美数据结构。

特性

堆栈是一种抽象数据类型,它形式化了受限访问集合的概念。该限制遵循 LIFO(后进先出)规则。因此,添加到堆栈中的最后一个元素是您从中删除的第一个元素。

堆栈可以使用数组或链表来实现。

它们是做什么用的?

现实生活中最常见的例子是在食堂中将盘子叠放在一起。位于顶部的板首先被移除。放置在最底部的盘子是在堆栈中保留时间最长的盘子。

堆栈最有用的一种情况是您需要获取给定元素的相反顺序。只需将它们全部推入堆栈,然后弹出它们。

另一个有趣的应用是有效括号问题。给定一串括号,您可以使用堆栈检查它们是否匹配。

特性

队列是受限访问集合中的另一种数据类型,就像前面讨论的堆栈一样。主要区别在于队列是按照FIFO(先进先出)模型组织的:队列中第一个插入的元素是第一个被移除的元素。队列可以使用固定长度的数组、循环数组或链表来实现。

它们是做什么用的?

这种抽象数据类型 (ADT) 的最佳用途当然是模拟现实生活中的队列。例如,在呼叫中心应用程序中,队列用于保存等待从顾问那里获得帮助的客户——这些客户应该按照他们呼叫的顺序获得帮助。

一种特殊且非常重要的队列类型是优先级队列。元素根据与它们关联的“优先级”被引入队列:具有最高优先级的元素首先被引入队列。这个 ADT 在许多图算法(Dijkstra 算法、BFS、Prim 算法、霍夫曼编码 )中是必不可少的。它是使用堆实现的。

另一种特殊类型的队列是deque 队列(双关语它的发音是“deck”)。可以从队列的两端插入/删除元素。

特性

Maps (dictionaries)是包含键集合和值集合的抽象数据类型。每个键都有一个与之关联的值。

哈希表是一种特殊类型的映射。它使用散列函数生成一个散列码,放入一个桶或槽数组:键被散列,结果散列指示值的存储位置。

最常见的散列函数(在众多散列函数中)是模常数函数。例如,如果常量是 6,则键 x 的值是x%6。

理想情况下,散列函数会将每个键分配给一个唯一的桶,但他们的大多数设计都采用了不完善的函数,这可能会导致具有相同生成值的键之间发生冲突。这种碰撞总是以某种方式适应的。

它们是做什么用的?

Maps 最着名的应用是语言词典。语言中的每个词都为其指定了定义。它是使用有序映射实现的(其键按字母顺序排列)。

通讯录也是一张Map。每个名字都有一个分配给它的电话号码。

另一个有用的应用是值的标准化。假设我们要为一天中的每一分钟(24 小时 = 1440 分钟)分配一个从 0 到 1439 的索引。哈希函数将为h(x) = x.小时*60+x.分钟。

特性

术语:

因为maps 是使用自平衡红黑树实现的(文章后面会解释),所以所有操作都在 O(log n) 内完成;所有哈希表操作都是常量。

图是表示一对两个集合的非线性数据结构:G={V, E},其中 V 是顶点(节点)的集合,而 E 是边(箭头)的集合。节点是由边互连的值 - 描述两个节点之间的依赖关系(有时与成本/距离相关联)的线。

图有两种主要类型:有向图和无向图。在无向图中,边(x, y)在两个方向上都可用:(x, y)和(y, x)。在有向图中,边(x, y)称为箭头,方向由其名称中顶点的顺序给出:箭头(x, y)与箭头(y, x) 不同。

它们是做什么用的?

特性

图论是一个广阔的领域,但我们将重点介绍一些最知名的概念:

一棵树是一个无向图,在连通性方面最小(如果我们消除一条边,图将不再连接)和在无环方面最大(如果我们添加一条边,图将不再是无环的)。所以任何无环连通无向图都是一棵树,但为了简单起见,我们将有根树称为树。

根是一个固定节点,它确定树中边的方向,所以这就是一切“开始”的地方。叶子是树的终端节点——这就是一切“结束”的地方。

一个顶点的孩子是它下面的事件顶点。一个顶点可以有多个子节点。一个顶点的父节点是它上面的事件顶点——它是唯一的。

它们是做什么用的?

我们在任何需要描绘层次结构的时候都使用树。我们自己的家谱树就是一个完美的例子。你最古老的祖先是树的根。最年轻的一代代表叶子的集合。

树也可以代表你工作的公司中的上下级关系。这样您就可以找出谁是您的上级以及您应该管理谁。

特性

二叉树是一种特殊类型的树:每个顶点最多可以有两个子节点。在严格二叉树中,除了叶子之外,每个节点都有两个孩子。具有 n 层的完整二叉树具有所有2ⁿ-1 个可能的节点。

二叉搜索树是一棵二叉树,其中节点的值属于一个完全有序的集合——任何任意选择的节点的值都大于左子树中的所有值,而小于右子树中的所有值。

它们是做什么用的?

BT 的一项重要应用是逻辑表达式的表示和评估。每个表达式都可以分解为变量/常量和运算符。这种表达式书写方法称为逆波兰表示法 (RPN)。这样,它们就可以形成一个二叉树,其中内部节点是运算符,叶子是变量/常量——它被称为抽象语法树(AST)。

BST 经常使用,因为它们可以快速搜索键属性。AVL 树、红黑树、有序集和映射是使用 BST 实现的。

特性

BST 有三种类型的 DFS 遍历:

所有这些类型的树都是自平衡二叉搜索树。不同之处在于它们以对数时间平衡高度的方式。

AVL 树在每次插入/删除后都是自平衡的,因为节点的左子树和右子树的高度之间的模块差异最大为 1。 AVL 以其发明者的名字命名:Adelson-Velsky 和 Landis。

在红黑树中,每个节点存储一个额外的代表颜色的位,用于确保每次插入/删除操作后的平衡。

在 Splay 树中,最近访问的节点可以快速再次访问,因此任何操作的摊销时间复杂度仍然是 O(log n)。

它们是做什么用的?

AVL 似乎是数据库理论中最好的数据结构。

RBT(红黑树) 用于组织可比较的数据片段,例如文本片段或数字。在 Java 8 版本中,HashMap 是使用 RBT 实现的。计算几何和函数式编程中的数据结构也是用 RBT 构建的。

在 Windows NT 中(在虚拟内存、网络和文件系统代码中),Splay 树用于缓存、内存分配器、垃圾收集器、数据压缩、绳索(替换用于长文本字符串的字符串)。

特性

最小堆是一棵二叉树,其中每个节点的值都大于或等于其父节点的值:val[par[x]]

Ⅵ 计算机考研:数据结构常用算法解析(8)

第九章 查找
查找分成静态查找和动态查找,静态查找只是找,返回查找位置。而动态查找则不同,若查找成功,返回位置,若查找不成功,则要返回新记录的插入位置。也就是说,静态查找不改变查找表,而动态查找则会有插入操作,会改变查找表的。
不同的查找所采用的存储结构也不同,静态查找采用顺序表,而动码迟态查找由于经常变动,所以用二叉排序树,二叉平衡树、B-和B+。
静态查找有,顺序查找,折半查找,分块查找(索引顺序查找)
顺序查找(Sequential Search)是最简单的一种查找方法。
算法思路
设给定值为k,在表(R1 R2……Rn)中,从Rn即最后一个元素开始,查找key=k的记录。若存在一个记录Ri(l≤i≤n)的key为k,则查找成功,返回记录序号i;否则,查找失败,返回0。
算法描述
int sqsearch(sqlist r,keytype k) //对表r顺序查找的算法//
{ int i;
r.data[0].key=k; //k存入监视哨//
i=r.len; //取表长//
while(r.data[i].key!=k)
i--; //顺序查找//
return(i);
}
算法用了一点技巧:先将k存入监视哨,若对某个i(≠0)有r.data[i].key=k,则查找成功,返回i;若i从n递减到1都无记录的key为k,i再减1为0时,必有r.data[0].key=k,说明查找失败,返回i=0。
平均查找成功长度ASL= ,而查找失败时,查找次数等于n+l。
折半查找算法及分析
当记录的key按关系≤或≥有序时,不管是递增的还是递减的,只要有序且采用顺序存储。
算法描述
int Binsearch(sqlist r,keytype k) //对有序表r折半查找的算法//
{ int low,high,mid;
low=1;high=r.len; //上下界初值//
while(low<=high) //表空间存在时//
{ mid=(low+high)/2; //求当前mid//
if (k==r.data[mid].key)
return(mid); //查找成功,返回mid//
if (k
high=mid-1; //调整上界,向左部查找//
else
low=mid+1; //调整下界,向右部查找//
}
return(0); //low>high,查找失败//
}
判定树:用来描述二分查找过程的二叉树。n个结点的判定树的深度和n个结点的完全二叉树深度相同= 。但判断树不一定是完全二叉树,但他的叶子结点所在层次之差不超过1。所以,折半查找在查找成功时和给定值进行比笑困较的关键字个数至多为
ASL=
分块查找算法及分析
分块查找(Blocking Search),又称索引顺序查找(Indexed Sequential Search),是顺序查找方法的一种改进,目的也是为了提高查找效率。
1.分块
设记录表长为n,将表的n个记录分成b= 个块,每块s个记录(最后一块记录数可以少于s个),即:
且表分块有序,即第i(1≤i≤b-1)块所有记录的key小于第i+1块中记录的key,但块内记录可以无序。
2.建立索引
每块对应一索引项:
KeymaxLink
其中Keymax为该块内记录的最大key;link为该块第一记录的序号(或指针)。
3.算法思路 分块索碰模念引查找分两步进行:
(1)由索引表确定待查找记录所在的块;(可以折半查找也可顺序因为索引表有序)
(2)在块内顺序查找。(只能用顺序查找,块内是无序的)

考研有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/

阅读全文

与常用算法和数据结构库相关的资料

热点内容
数电编译器的作用 浏览:335
时间算法与现在有什么区别 浏览:160
7zip解压后没文件夹 浏览:900
为什么安卓送玫瑰ios收不到 浏览:6
美篇文章加密是什么意思 浏览:80
ilasm编译dll 浏览:36
呼吸灯单片机程序 浏览:950
linux域socket 浏览:246
qq分身怎么样才能加密 浏览:453
windows打开linux 浏览:995
新建文件夹为什么不能发送微信 浏览:600
交警app怎么绑定本人几辆车 浏览:987
彩虹六号如何人工服务器 浏览:634
mc服务器地址怎么登入 浏览:557
苹果app怎么扫描二维码下载 浏览:961
css文件在线解压 浏览:156
36岁程序员近况 浏览:285
哪里可以下载不加密的歌 浏览:936
隐藏文件夹是什么梗 浏览:920
插件注册命令 浏览:498