导航:首页 > 源码编译 > knn算法复杂度

knn算法复杂度

发布时间:2024-04-22 17:21:21

① KNN算法-4-算法优化-KD树

KNN算法的重要步骤是对所有的实例点进行快速k近邻搜索。如果采用线性扫描(linear scan),要计算输入点与每一个点的距离,时间复杂度非常高。因此在查询操作时,可以使用kd树对查询操作进行优化。

Kd-树是K-dimension tree的缩写,是对数据点在k维空间(如二维(x,y),三维(x,y,z),k维(x1,y,z..))中划分的一种数据结构,主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。本质上说,Kd-树就是一种平衡二叉树。

k-d tree是每个节点均为k维样本点的二叉树,其上的每个样本点代表一个超平面,该超平面垂直于当前划分维度的坐标轴,并在该维度上将空间划分为两部分,一部分在其左子树,另一部分在其右子树。即若当前节点的划分维度为d,其左子树上所有点在d维的坐标值均小于当前值,右子树上所有点在d维的坐标值均大于等于当前值,本定义对其任意子节点均成立。

必须搞清楚的是,k-d树是一种空间划分树,说白了,就是把整个空间划分为特定的几个部分,然后在特定空间的部分内进行相关搜索操作。想象一个三维(多维有点为难你的想象力了)空间,kd树按照一定的划分规则把这个三维空间划分了多个空间,如下图所示:

首先,边框为红色的竖直平面将整个空间划分为两部分,此两部分又分别被边框为绿色的水平平面划分为上下两部分。最后此4个子空间又分别被边框为蓝色的竖直平面分割为两部分,变为8个子空间,此8个子空间即为叶子节点。

常规的k-d tree的构建过程为:

对于构建过程,有两个优化点:

例子:采用常规的构建方式,以二维平面点(x,y)的集合(2,3),(5,4),(9,6),(4,7),(8,1),(7,2) 为例结合下图来说明k-d tree的构建过程:

如上算法所述,kd树的构建是一个递归过程,我们对左子空间和右子空间内的数据重复根节点的过程就可以得到一级子节点(5,4)和(9,6),同时将空间和数据集进一步细分,如此往复直到空间中只包含一个数据点。

如之前所述,kd树中,kd代表k-dimension,每个节点即为一个k维的点。每个非叶节点可以想象为一个分割超平面,用垂直于坐标轴的超平面将空间分为两个部分,这样递归的从根节点不停的划分,直到没有实例为止。经典的构造k-d tree的规则如下:

kd树的检索是KNN算法至关重要的一步,给定点p,查询数据集中与其距离最近点的过程即为最近邻搜索。

如在构建好的k-d tree上搜索(3,5)的最近邻时,对二维空间的最近邻搜索过程作分析。

首先从根节点(7,2)出发,将当前最近邻设为(7,2),对该k-d tree作深度优先遍历。

以(3,5)为圆心,其到(7,2)的距离为半径画圆(多维空间为超球面),可以看出(8,1)右侧的区域与该圆不相交,所以(8,1)的右子树全部忽略。

接着走到(7,2)左子树根节点(5,4),与原最近邻对比距离后,更新当前最近邻为(5,4)。

以(3,5)为圆心,其到(5,4)的距离为半径画圆,发现(7,2)右侧的区域与该圆不相交,忽略该侧所有节点,这样(7,2)的整个右子树被标记为已忽略。

遍历完(5,4)的左右叶子节点,发现与当前最优距离相等,不更新最近邻。所以(3,5)的最近邻为(5,4)。

举例:查询点(2.1,3.1)

星号表示要查询的点(2.1,3.1)。通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点,也就是叶子节点(2,3)。而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行相关的‘回溯'操作。也就是说,算法首先沿搜索路径反向查找是否有距离查询点更近的数据点。

举例:查询点(2,4.5)

一个复杂点了例子如查找点为(2,4.5),具体步骤依次如下:

上述两次实例表明,当查询点的邻域与分割超平面两侧空间交割时,需要查找另一侧子空间,导致检索过程复杂,效率下降。

一般来讲,最临近搜索只需要检测几个叶子结点即可,如下图所示:

但是,如果当实例点的分布比较糟糕时,几乎要遍历所有的结点,如下所示:

研究表明N个节点的K维k-d树搜索过程时间复杂度为: 。

同时,以上为了介绍方便,讨论的是二维或三维情形。但在实际的应用中,如SIFT特征矢量128维,SURF特征矢量64维,维度都比较大,直接利用k-d树快速检索(维数不超过20)的性能急剧下降,几乎接近贪婪线性扫描。假设数据集的维数为D,一般来说要求数据的规模N满足N»2D,才能达到高效的搜索。

Sklearn中有KDTree的实现,仅构建了一个二维空间的k-d tree,然后对其作k近邻搜索及指定半径的范围搜索。多维空间的检索,调用方式与此例相差无多。

② kNN(k-NearestNeighbor)算法

参考《数据挖掘10大算法》对kNN算法进行基本总结,附有一个Python3的简例。

基本思想
从训练集中找出 k 个最接近测试对象的训练对象,再从这 k 个对象中找出居于主导的类别,将其赋给测试对象。

定位
由于这种总体占优的决策模式,对于类域的交叉、重叠较多的或者多模型、多标签的待分样本集来说,kNN方法较其他方法更为适合。kNN算法属于有监督学习的分类算法。

避开了两个问题
(1)分类时对象之间不可能完全匹配(kNN方法计算的是对象之间的距离);
(2)具有相同属性的对象有不同的类别(kNN方法依据总体占优的类别进行决策,而不是单一对象的类别进行决策)。

需要考虑几个关键要素
(1)训练集;
(2)用于计算对象之间临近的程度或者其他相似的指标;
(3)最近邻的个数 k;
(4)基于 k 个最近邻及其类别对目标对象类别进行判定的方法。

kNN方法很容易理解和实现,在一定条件下,其分类错误率不会超过最优贝叶斯错误率的两倍。一般情况下,kNN方法的错误率会逐渐收敛到最优贝叶斯错误率,可以用作后者的近似。

基本算法

算法的存储复杂度为O(n),时间复杂度为O(n),其中 n 为训练对象的数量。

影响kNN算法性能的几个关键因素
(1)k 值的选择;
如果 k 值选得过小,结果就会对噪声点特别敏感;k 值选得过大就会使得近邻中包含太多别的类的点。最佳 k 值的估计可以使用交叉验证的方法。通常,使用 k=1会有一个比较好的结果(特别是对于小数据集的情况)。但是,在样本很充足的情况下,选择较大的 k 值可以提高抗噪能力。

(2)类别决策时的综合方法;
对目标对象的类别进行决策,最简单的就是使用总体占优方法(简单投票,票数最多的一类胜出)。稍微复杂一点,考虑近邻中每个点与目标对象的距离不同,对决策的份量进行加权考虑。

(3)距离测量标准的选择。
距离测量的标准一般选择 欧几里得距离 或者 曼哈顿距离

简单例子

③ 01 KNN算法 - 概述

KNN算法 全称是K近邻算法 (K-nearst neighbors,KNN)

KNN是一种基本的机器学习算法,所谓K近邻,就是k个最近的邻居。即每个样本都可以用和它 最接近的k个邻近位置的样本 来代替。

KNN是个相对比较简单的算法,比起之前提过的回归算法和分类算法更容易。如果一个人从来没有接触过机器学习的算法,拿到数据后最容易想到的分类方式就是K近邻。打个比方:你们想了解我是个怎样的人,然后你们发现我的身边关系最密切的朋友是一群逗逼,所以你们可以默认我也是一个逗逼。

KNN算法即可以应用于 分类算法 中,也可以应用于 回归算法 中。

KNN在做回归和分类的主要区别,在于最后做预测时候的决策不同。在分类预测时,一般采用 多数表决法 。在做回归预测时,一般使用 平均值法

多数表决法: 分类时,哪些样本离我的目标样本比较近,即目标样本离哪个分类的样本更接近。

平均值法: 预测一个样本的平均身高,观察目标样本周围的其他样本的平均身高,我们认为平均身高是目标样本的身高。

再举个例子:
分别根据甜度和脆度两个特征来判断食物的种类。
根据样本我们普遍发现:
比较甜,比较脆的食物都是水果。
不甜,不太脆的食物是蛋白质。
不甜,比较脆的食物是蔬菜。
于是根据目标的样本甜度和脆度两个特征,我们可以对其进行分类了。

k值的选择:
先选一个较小的值,然后通过交叉验证选择一个合适的最终值。
k越小,即使用较小的领域中的样本进行预测,训练误差会减小,但模型会很复杂,以至于过拟合。
k越大,即使用交大的领域中的样本进行预测,训练误差会增大,模型会变得简单,容易导致欠拟合。

距离的度量:
使用欧几里得距离:欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

决策规划:
分类:多数表决法、加权多数表决法。
回归:平均值法、加权平均值法。

加权多数表决法:

平均值法和加权平均值法:
同样看上面的图,上方的三个样本值为3,下面两个样本值为2,预测?的值。
如果不考虑加权,直接计算平均值:
(3 * 3 + 2 * 2) / 5 = 2.6

加权平均值:权重分别为1/7和2/7。计算加权平均值:
(3 * 3* 1/7 + 2 * 2 * 2/7) / 5 = 2.43

1、蛮力实现(brute):
计算预测样本到所有训练集样本的距离,然后选择最小的k个距离,即可得到k个最邻近点。
缺点:当特征数多、样本数多时,算法的效率比较低。

2、KD树 (kd_tree):
首先对训练数据进行建模,构建KD树,然后根据建好的模型来获取邻近样本数据。
后续内容会介绍KD树搜索最小值的方式,让大家直观感受到KD树比蛮力实现要少检索多少数据。

④ k近邻算法的案例介绍

如 上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:
如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。 于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN 算法本身简单有效,它是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
K 近邻算法使用的模型实际上对应于对特征空间的划分。K 值的选择,距离度量和分类决策规则是该算法的三个基本要素: K 值的选择会对算法的结果产生重大影响。K值较小意味着只有与输入实例较近的训练实例才会对预测结果起作用,但容易发生过拟合;如果 K 值较大,优点是可以减少学习的估计误差,但缺点是学习的近似误差增大,这时与输入实例较远的训练实例也会对预测起作用,是预测发生错误。在实际应用中,K 值一般选择一个较小的数值,通常采用交叉验证的方法来选择最优的 K 值。随着训练实例数目趋向于无穷和 K=1 时,误差率不会超过贝叶斯误差率的2倍,如果K也趋向于无穷,则误差率趋向于贝叶斯误差率。 该算法中的分类决策规则往往是多数表决,即由输入实例的 K 个最临近的训练实例中的多数类决定输入实例的类别 距离度量一般采用 Lp 距离,当p=2时,即为欧氏距离,在度量之前,应该将每个属性的值规范化,这样有助于防止具有较大初始值域的属性比具有较小初始值域的属性的权重过大。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
实现 K 近邻算法时,主要考虑的问题是如何对训练数据进行快速 K 近邻搜索,这在特征空间维数大及训练数据容量大时非常必要。

⑤ KNN算法常见问题总结

给定测试实例,基于某种距离度量找出训练集中与其最靠近的k个实例点,然后基于这k个最近邻的信息来进行预测。

通常,在分类任务中可使用“投票法”,即选择这k个实例中出现最多的标记类别作为预测结果;在回归任务中可使用“平均法”,即将这k个实例的实值输出标记的平均值作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近的实例权重越大。

k近邻法不具有显式的学习过程,事实上,它是懒惰学习(lazy learning)的着名代表,此类学习技术在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理。

KNN一般采用欧氏距离,也可采用其他距离度量,一般的Lp距离:

KNN中的K值选取对K近邻算法的结果会产生重大影响。如果选择较小的K值,就相当于用较小的领域中的训练实例进行预测,“学习”近似误差(近似误差:可以理解为对现有训练集的训练误差)会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是“学习”的估计误差会增大,换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合;

如果选择较大的K值,就相当于用较大领域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误,且K值的增大就意味着整体的模型变得简单。

在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法来选择最优的K值。经验规则:k一般低于训练样本数的平方根

1、计算测试对象到训练集中每个对象的距离

2、按照距离的远近排序

3、选取与当前测试对象最近的k的训练对象,作为该测试对象的邻居

4、统计这k个邻居的类别频率

5、k个邻居里频率最高的类别,即为测试对象的类别

输入X可以采用BallTree或KDTree两种数据结构,优化计算效率,可以在实例化KNeighborsClassifier的时候指定。

KDTree

基本思想是,若A点距离B点非常远,B点距离C点非常近, 可知A点与C点很遥远,不需要明确计算它们的距离。 通过这样的方式,近邻搜索的计算成本可以降低为O[DNlog(N)]或更低。 这是对于暴力搜索在大样本数N中表现的显着改善。KD 树的构造非常快,对于低维度 (D<20) 近邻搜索也非常快, 当D增长到很大时,效率变低: 这就是所谓的 “维度灾难” 的一种体现。

KD 树是一个二叉树结构,它沿着数据轴递归地划分参数空间,将其划分为嵌入数据点的嵌套的各向异性区域。 KD 树的构造非常快:因为只需沿数据轴执行分区, 无需计算D-dimensional 距离。 一旦构建完成, 查询点的最近邻距离计算复杂度仅为O[log(N)]。 虽然 KD 树的方法对于低维度 (D<20) 近邻搜索非常快, 当D增长到很大时, 效率变低。

KD树的特性适合使用欧氏距离。

BallTree

BallTree解决了KDTree在高维上效率低下的问题,这种方法构建的树要比 KD 树消耗更多的时间,但是这种数据结构对于高结构化的数据是非常有效的, 即使在高维度上也是一样。

KD树是依次对K维坐标轴,以中值切分构造的树;ball tree 是以质心C和半径r分割样本空间,每一个节点是一个超球体。换句简单的话来说,对于目标空间(q, r),所有被该超球体截断的子超球体内的所有子空间都将被遍历搜索。

BallTree通过使用三角不等式减少近邻搜索的候选点数:|x+y|<=|x|+|y|通过这种设置, 测试点和质心之间的单一距离计算足以确定距节点内所有点的距离的下限和上限. 由于 ball 树节点的球形几何, 它在高维度上的性能超出 KD-tree, 尽管实际的性能高度依赖于训练数据的结构。

BallTree适用于更一般的距离。

1、优点

非常简单的分类算法没有之一,人性化,易于理解,易于实现

适合处理多分类问题,比如推荐用户

可用于数值型数据和离散型数据,既可以用来做分类也可以用来做回归

对异常值不敏感

2、缺点

属于懒惰算法,时间复杂度较高,因为需要计算未知样本到所有已知样本的距离

样本平衡度依赖高,当出现极端情况样本不平衡时,分类绝对会出现偏差,可以调整样本权值改善

可解释性差,无法给出类似决策树那样的规则

向量的维度越高,欧式距离的区分能力就越弱

样本空间太大不适合,因为计算量太大,预测缓慢

文本分类

用户推荐

回归问题

1)所有的观测实例中随机抽取出k个观测点,作为聚类中心点,然后遍历其余的观测点找到距离各自最近的聚类中心点,将其加入到该聚类中。这样,我们就有了一个初始的聚类结果,这是一次迭代的过程。

2)我们每个聚类中心都至少有一个观测实例,这样,我们可以求出每个聚类的中心点(means),作为新的聚类中心,然后再遍历所有的观测点,找到距离其最近的中心点,加入到该聚类中。然后继续运行2)。

3)如此往复2),直到前后两次迭代得到的聚类中心点一模一样。

本算法的时间复杂度:O(tkmn),其中,t为迭代次数,k为簇的数目,m为记录数,n为维数;

空间复杂度:O((m+k)n),其中,k为簇的数目,m为记录数,n为维数。

适用范围:

K-menas算法试图找到使平凡误差准则函数最小的簇。当潜在的簇形状是凸面的,簇与簇之间区别较明显,且簇大小相近时,其聚类结果较理想。前面提到,该算法时间复杂度为O(tkmn),与样本数量线性相关,所以,对于处理大数据集合,该算法非常高效,且伸缩性较好。但该算法除了要事先确定簇数K和对初始聚类中心敏感外,经常以局部最优结束,同时对“噪声”和孤立点敏感,并且该方法不适于发现非凸面形状的簇或大小差别很大的簇。

1)首先,算法只能找到局部最优的聚类,而不是全局最优的聚类。而且算法的结果非常依赖于初始随机选择的聚类中心的位置。我们通过多次运行算法,使用不同的随机生成的聚类中心点运行算法,然后对各自结果C通过evaluate(C)函数进行评估,选择多次结果中evaluate(C)值最小的那一个。k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远

2)关于初始k值选择的问题。首先的想法是,从一个起始值开始,到一个最大值,每一个值运行k-means算法聚类,通过一个评价函数计算出最好的一次聚类结果,这个k就是最优的k。我们首先想到了上面用到的evaluate(C)。然而,k越大,聚类中心越多,显然每个观测点距离其中心的距离的平方和会越小,这在实践中也得到了验证。第四节中的实验结果分析中将详细讨论这个问题。

3)关于性能问题。原始的算法,每一次迭代都要计算每一个观测点与所有聚类中心的距离。有没有方法能够提高效率呢?是有的,可以使用k-d tree或者ball tree这种数据结构来提高算法的效率。特定条件下,对于一定区域内的观测点,无需遍历每一个观测点,就可以把这个区域内所有的点放到距离最近的一个聚类中去。这将在第三节中详细地介绍。

相似点:都包含这样的过程,给定一个点,在数据集中找离它最近的点。即二者都用到了NN(Nears Neighbor)算法,一般用KD树来实现NN。

k-d tree 与 ball tree

1)k-d tree[5]

把n维特征的观测实例放到n维空间中,k-d tree每次通过某种算法选择一个特征(坐标轴),以它的某一个值作为分界做超平面,把当前所有观测点分为两部分,然后对每一个部分使用同样的方法,直到达到某个条件为止。

上面的表述中,有几个地方下面将会详细说明:(1)选择特征(坐标轴)的方法 (2)以该特征的哪一个为界 (3)达到什么条件算法结束。

(1)选择特征的方法

计算当前观测点集合中每个特征的方差,选择方差最大的一个特征,然后画一个垂直于这个特征的超平面将所有观测点分为两个集合。

(2)以该特征的哪一个值为界 即垂直选择坐标轴的超平面的具体位置。

第一种是以各个点的方差的中值(median)为界。这样会使建好的树非常地平衡,会均匀地分开一个集合。这样做的问题是,如果点的分布非常不好地偏斜的,选择中值会造成连续相同方向的分割,形成细长的超矩形(hyperrectangles)。

替代的方法是计算这些点该坐标轴的平均值,选择距离这个平均值最近的点作为超平面与这个坐标轴的交点。这样这个树不会完美地平衡,但区域会倾向于正方地被划分,连续的分割更有可能在不同方向上发生。

(3)达到什么条件算法结束

实际中,不用指导叶子结点只包含两个点时才结束算法。你可以设定一个预先设定的最小值,当这个最小值达到时结束算法。

图6中,星号标注的是目标点,我们在k-d tree中找到这个点所处的区域后,依次计算此区域包含的点的距离,找出最近的一个点(黑色点),如果在其他region中还包含更近的点则一定在以这两个点为半径的圆中。假设这个圆如图中所示包含其他区域。先看这个区域兄弟结点对应区域,与圆不重叠;再看其双亲结点的兄弟结点对应区域。从它的子结点对应区域中寻找(图中确实与这个双亲结点的兄弟结点的子结点对应区域重叠了)。在其中找是否有更近的结点。

k-d tree的优势是可以递增更新。新的观测点可以不断地加入进来。找到新观测点应该在的区域,如果它是空的,就把它添加进去,否则,沿着最长的边分割这个区域来保持接近正方形的性质。这样会破坏树的平衡性,同时让区域不利于找最近邻。我们可以当树的深度到达一定值时重建这棵树。

然而,k-d tree也有问题。矩形并不是用到这里最好的方式。偏斜的数据集会造成我们想要保持树的平衡与保持区域的正方形特性的冲突。另外,矩形甚至是正方形并不是用在这里最完美的形状,由于它的角。如果图6中的圆再大一些,即黑点距离目标点点再远一些,圆就会与左上角的矩形相交,需要多检查一个区域的点,而且那个区域是当前区域双亲结点的兄弟结点的子结点。

为了解决上面的问题,我们引入了ball tree。

2)ball tree[4]

解决上面问题的方案就是使用超球面而不是超矩形划分区域。使用球面可能会造成球面间的重叠,但却没有关系。ball tree就是一个k维超球面来覆盖这些观测点,把它们放到树里面。图7(a)显示了一个2维平面包含16个观测实例的图,图7(b)是其对应的ball tree,其中结点中的数字表示包含的观测点数。

不同层次的圆被用不同的风格画出。树中的每个结点对应一个圆,结点的数字表示该区域保含的观测点数,但不一定就是图中该区域囊括的点数,因为有重叠的情况,并且一个观测点只能属于一个区域。实际的ball tree的结点保存圆心和半径。叶子结点保存它包含的观测点。

使用ball tree时,先自上而下找到包含target的叶子结点,从此结点中找到离它最近的观测点。这个距离就是最近邻的距离的上界。检查它的兄弟结点中是否包含比这个上界更小的观测点。方法是:如果目标点距离兄弟结点的圆心的距离大于这个圆的圆心加上前面的上界的值,则这个兄弟结点不可能包含所要的观测点。(如图8)否则,检查这个兄弟结点是否包含符合条件的观测点。

那么,ball tree的分割算法是什么呢?

选择一个距离当前圆心最远的观测点i1,和距离i1最远的观测点 i2,将圆中所有离这两个点最近的观测点都赋给这两个簇的中心,然后计算每一个簇的中心点和包含所有其所属观测点的最小半径。对包含n个观测点的超圆进行分割,只需要线性的时间。

与k-d tree一样,如果结点包含的观测点到达了预先设定的最小值,这个顶点就可以不再分割了。

阅读全文

与knn算法复杂度相关的资料

热点内容
墨镜慧眼怎么下载厂商的app 浏览:59
iphone加密专线 浏览:491
aes产生加密文件 浏览:411
编程实现蓝牙通信 浏览:766
怎么恢复掉签的app 浏览:847
服务器部署ip地址 浏览:321
涉密场所周边安全防护距离算法 浏览:672
安卓fpse模拟器怎么设置加速 浏览:946
建行app怎么生成电子签章 浏览:508
获取当前时间javadate 浏览:73
带密码的wifi如何加密 浏览:237
服务器怎么变成阵列 浏览:718
web前端黑客技术pdf 浏览:71
育儿百科全书pdf 浏览:600
任务栏启动命令 浏览:912
编译优化等级区别 浏览:757
unix网关命令 浏览:877
想自己做网站要学编程吗 浏览:597
租个服务器开个私服需要什么 浏览:273
图片换成pdf格式 浏览:664