⑴ 求助Matlab蚁群算法求一般函数极值的算法
function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)
%% ---------------------------------------------------------------
% ACASP.m
% 蚁群算法动态寻路算法
% ChengAihua,PLA Information Engineering University,ZhengZhou,China
% Email:[email protected]
% All rights reserved
%% ---------------------------------------------------------------
% 输入参数列表
% G 地形图为01矩阵,如果为1表示障碍物
% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)
% K 迭代次数(指蚂蚁出动多少波)
% M 蚂蚁个数(每一波蚂蚁有多少个)
% S 起始点(最短路径的起始点)
% E 终止点(最短路径的目的点)
% Alpha 表征信息素重要程度的参数
% Beta 表征启发式因子重要程度的参数
% Rho 信息素蒸发系数
% Q 信息素增加强度系数
%
% 输出参数列表
% ROUTES 每一代的每一只蚂蚁的爬行路线
% PL 每一代的每一只蚂蚁的爬行路线长度
% Tau 输出动态修正过的信息素
%% --------------------变量初始化----------------------------------
%load
D=G2D(G);
N=size(D,1);%N表示问题的规模(象素个数)
MM=size(G,1);
a=1;%小方格象素的边长
Ex=a*(mod(E,MM)-0.5);%终止点横坐标
if Ex==-0.5
Ex=MM-0.5;
end
Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标
Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数
%下面构造启发式信息矩阵
for i=1:N
if ix==-0.5
ix=MM-0.5;
end
iy=a*(MM+0.5-ceil(i/MM));
if i~=E
Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
else
Eta(1,i)=100;
end
end
ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线
PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度
%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁--------------------
for k=1:K
disp(k);
for m=1:M
%% 第一步:状态初始化
W=S;%当前节点初始化为起始点
Path=S;%爬行路线初始化
PLkm=0;%爬行路线长度初始化
TABUkm=ones(1,N);%禁忌表初始化
TABUkm(S)=0;%已经在初始点了,因此要排除
DD=D;%邻接矩阵初始化
%% 第二步:下一步可以前往的节点
DW=DD(W,:);
DW1=find(DW
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同
while W~=E&&Len_LJD>=1
%% 第三步:转轮赌法选择下一步怎么走
PP=zeros(1,Len_LJD);
for i=1:Len_LJD
PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
end
PP=PP/(sum(PP));%建立概率分布
Pcum=cumsum(PP);
Select=find(Pcum>=rand);
%% 第四步:状态更新和记录
Path=[Path,to_visit];%路径增加
PLkm=PLkm+DD(W,to_visit);%路径长度增加
W=to_visit;%蚂蚁移到下一个节点
for kk=1:N
if TABUkm(kk)==0
DD(W,kk)=inf;
DD(kk,W)=inf;
end
end
TABUkm(W)=0;%已访问过的节点从禁忌表中删除
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可选节点的个数
end
%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度
ROUTES{k,m}=Path;
if Path(end)==E
PL(k,m)=PLkm;
else
PL(k,m)=inf;
end
end
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
for m=1:M
if PL(k,m) ROUT=ROUTES{k,m};
TS=length(ROUT)-1;%跳数
PL_km=PL(k,m);
for s=1:TS
x=ROUT(s);
Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
end
end
end
Tau=(1-Rho).
⑵ 雷英杰编着的《MATLAB遗传算法工具箱及应用》第七章的第一个例子
程序倒数第六行应该是variable',还有注释掉倒数12行。把hold on的分号都去掉。
figure(1);
fplot('variable.*sin(10*pi*variable)+2.0',[-1,2]);
nind=40;
maxgen=25;
preci=20;
ggap=0.9;
trace=zeros(2,maxgen);
fieldd=[20;-1;2;1;0;1;1];
chrom=crtbp(nind, preci);
gen=0;
variable=bs2rv(chrom,fieldd);
objv=variable.*sin(10*pi*variable)+2.0
while gen<maxgen
fitnv=ranking(-objv);
selch=select('sus',chrom,fitnv,ggap);
selch=recombin('xovsp',selch,0.7);
selch=mut(selch);
variable=bs2rv(selch,fieldd);
objvsel=variable.*sin(10*pi*variable)+2.0;
[chrom objv]=reins(chrom,selch,1,1,objv,objvsel);
gen=gen+1;
[y,i]=max(objv);
hold on;
%plot(variable(i),y,'bo')
trace(1,gen)=max(objv);
trace(2,gen)=sum(objv)/length(objv);
end
variable=bs2rv(chrom,fieldd);
hold on
grid;
plot(variable',objv','b*');
figure(2)
plot(trace(1,:)');
hold on
plot(trace(2,:)','-.');grid;
legend('解的变化','种群均值的变化')
⑶ 遗传算法求解tsp问题的matlab程序
把下面的(1)-(7)依次存成相应的.m文件,在(7)的m文件下运行就可以了
(1) 适应度函数fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)个体距离计算函数 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
end
(3)交叉操作函数 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end
end
(4)对调函数 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
end
(5)变异函数 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);
temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)连点画图函数 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end
end
(7)主函数
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=50; %%城市的个数
M=100; %%种群的个数
C=100; %%迭代次数
C_old=C;
m=2; %%适应值归一化淘汰加速指数
Pc=0.4; %%交叉概率
Pmutation=0.2; %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%如果城市之间的距离矩阵已知,可以在下面赋值给D,否则就随机生成
%%生成初始群体
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%随机选择一个种群
R=popm(1,:);
figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%画出种群各城市之间的连线
axis([-3 3 -3 3]);
%%初始化种群及其适应函数
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);
distance_min=zeros(C+1,1); %%各次迭代的最小的种群的距离
while C>=0
fprintf('迭代第%d次\n',C);
%%选择操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次选择都保存最优的种群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];
%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%变异操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求适应度函数
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);
⑷ matlab遗传算法怎么输入参数
遗传算法工具箱的函数GA基本调用格式如下:
X
=
GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub)
其中前两个参数分别是适应度函数和变量个数,第三、四个参数(A和b)即为线性不等式约束。
你现在需要做的是,增加几个线性约束条件:
x1
<
x2
x2
<
x3
x3
<
x4
x4
<
x5
不过,有个问题,遗传算法等优化工具对不等式约束的要求,都必须是闭集(带等号的不等式),也就是说,要的是类似下面这样的约束:
x1
<=
x2
x2
<=
x3
x3
<=
x4
x4
<=
x5
⑸ 缁呜弻瑙呴熺畻娉旷殑绠浠
缁呜弻瑙呴熺畻娉(Bacterial Foraging Algorithm,BFA)[浜︽湁绉颁负缁呜弻瑙呴熶紭鍖栫畻娉(Bacterial Foraging Optimization algorithm,BFO||BFOA)]鐢盏.M.Passino浜2002骞村熀浜嶦coli澶ц偁𨱒呜弻鍦ㄤ汉浣撹偁阆揿唴钖炲櫖椋熺墿镄勮屼负锛屾彁鍑虹殑涓绉嶆柊鍨嬩豢鐢熺被绠楁硶銆傝ョ畻娉曞洜鍏锋湁缇や綋鏅鸿兘绠楁硶骞惰屾悳绱銆佹槗璺冲嚭灞閮ㄦ瀬灏忓肩瓑浼樼偣锛屾垚涓虹敓鐗╁惎鍙戝纺璁$畻镰旂┒棰嗗烟镄勫张涓鐑镣广
⑹ matlab上的遗传算法函数优化
用ga函数,ga函数就是遗传算法的函数,它的调用格式为:
x
=
ga(fitnessfcn,nvars,a,b,aeq,beq,lb,ub,nonlcon,options)
fitnessfcn就是待优化函数,nvars为变量个数,然后后面的lb是下界,ub是上界,你这个问题就需要这4个位置的参数,其他位置的参数用[]代替就行,由于ga函数默认是求待优化函数的最小值,所以要想求最大值需要把待优化函数取负,即编写为
function
y=myfun(x)
y=-x.*sin(10*pi.*x)-2;
把这个函数存为myfun.m,然后在命令行里敲
x=ga(@myfun,1,[],[],[],[],[1],[2])
会返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.8506
由于遗传算法的原理其实是在取值范围内随机选择初值然后进行遗传,所以可能每次运行给出的值都不一样,比如再运行一次会返回
optimization
terminated:
average
change
in
the
fitness
value
less
than
options.tolfun.
x
=
1.6507
这个具体原因需要参考遗传算法的有关资料