导航:首页 > 源码编译 > 模糊聚类算法研究

模糊聚类算法研究

发布时间:2024-05-04 14:42:09

❶ 模糊c-均值聚类算法的应用

模糊聚类分析作为无监督机器学习的主要技术之一,是用模糊理论对重要数据分析和建模的方法,建立了样本类属的不确定性描述,能比较客观地反映现实世界,它已经有效地应用在大规模数据分析、数据挖掘、矢量量化、图像分割、模式识别等领域,具有重要的理论与实际应用价值,随着应用的深入发展,模糊聚类算法的研究不断丰富。

❷ 什么是聚类分析聚类算法有哪几种

聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于

分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行

定量的分类。随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识

难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又

将多元分析的技术引入到数值分类学形成了聚类分析。

聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论

聚类法、聚类预报法等。

聚类分析计算方法主要有如下几种:分裂法(partitioning methods):层次法(hierarchical

methods):基于密度的方法(density-based methods): 基于网格的方法(grid-based

methods): 基于模型的方法(model-based methods)。

❸ 四种聚类方法之比较

四种聚类方法之比较
介绍了较为常见的k-means、层次聚类、SOM、FCM等四种聚类算法,阐述了各自的原理和使用步骤,利用国际通用测试数据集IRIS对这些算法进行了验证和比较。结果显示对该测试类型数据,FCM和k-means都具有较高的准确度,层次聚类准确度最差,而SOM则耗时最长。
关键词:聚类算法;k-means;层次聚类;SOM;FCM
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。
聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。
聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。
1 聚类算法的分类
目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。
每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。
目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如着名的FCM算法等。
本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
2 四种常用聚类算法研究
2.1 k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:
输入:包含n个对象的数据库和簇的数目k;
输出:k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) repeat;
(3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(4) 更新簇的平均值,即计算每个簇中对象的平均值;
(5) until不再发生变化。
2.2 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下:

这里给出采用最小距离的凝聚层次聚类算法流程:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
2.3 SOM聚类算法
SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
2.4 FCM聚类算法
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。

算法流程:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
3 四种聚类算法试验
3.1 试验数据
实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS[13]数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。
3.2 试验结果说明
文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。

如表1所示,对于四种聚类算法,按三方面进行比较:(1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;(2)运行时间:即聚类整个过程所耗费的时间,单位为s;(3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为:

3.3 试验结果分析
四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。
聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。

❹ 模糊C均值聚类算法研究

网页优化策略的模糊C均值(FCM)聚类算法研究

王玉龙 叶新铭 李秀华

摘 要:在对Web站点进行优化时,为了降低成本,往往需要在不改变硬件和网络配置的情况下提高网站的性能.此时,对构成网站的网页的修改就成为提高站点性能的主要途径.对网页的访问速度的测量已有很多成熟的方法,但是如何根据测试的结果指定合理的优化策略,却鲜有论述.本文使用FCM算法对测试结果和网站日志进行聚类分析,从而得到一个良好的优化策略.
关键词:Web;优化;模糊C均值(FCM);聚类算法

Research on Fuzzy C-means Clustering Algorithm in Web Page Optimization Strategy

WANG Yu-Long YE Xin-Ming LI Xiu-Hua

基金项目:国家自然基金项目(60263002),内蒙古科技攻关项目(2002061002).
作者简介:王玉龙 内蒙古大学计算机学院研究生.
作者简介:叶新铭 内蒙古大学计算机学院教授.
作者简介:李秀华 内蒙古大学计算机学院研究生.
作者单位:王玉龙(内蒙古大学计算机学院,呼和浩特,010021)
叶新铭(内蒙古大学计算机学院,呼和浩特,010021)
李秀华(内蒙古大学计算机学院,呼和浩特,010021)

参考文献:

[1]An application of fuzzy clustering in group-positioning analysis [J]. Proc Natl Sci,Counc ROC(C) , 2000 ,10(2) :157~167
[2]Michalopoulos M,D ounias G D, Thomaidis N T. Decision making using fuzzy C-means and inctive machine learning for managing bank branches performance [EB/OL]. http:‖citeseer. nj. nec.com/458829. html, 2002
[3]Xie X, Beni G. A validity measure for fuzzy clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(8):814~847
[4]Pal N R, Bezedek C. On cluster validity for the fuzzy c-Means model. IEEE Trans, 1995,3: 370~379
[5]Xie X L, Beni G. A validity measure for fuzzy clustering. IEEE Trans, 1991,13(8): 841~847
[6]于剑,程乾生.模糊聚类方法中的最佳聚类数的搜索范围[J].中国科学(E辑),2002,32(2):274~280

出版日期:2005年10月25日

❺ 模糊聚类分析法和聚类分析法有什么区别,还有一种动态模糊分析法,它比模糊分析法有什么样的改进。

模糊聚类分析是聚类分析的一种。聚类分析按照不同的分类标准可以进行不同的分类。就好像人按照性别可以分成男人和女人,按照年龄可以分为老中青一样。聚类分析如果按照隶属度的取值范围可以分为两类,一类叫硬聚类算法,另一类就是模糊聚类算法。隶属度的概念是从模糊集理论里引申出来的。传统硬聚类算法隶属度只有两个值 0 和 1。 也就是说一个样本只能完全属于某一个类或者完全不属于某一个类。举个例子,把温度分为两类,大于10度为热,小于或者等于10度为冷,这就是典型的“硬隶属度”概念。 那么不论是5度 还是负100度都属于冷这个类,而不属于热这个类的。而模糊集里的隶属度是一个取值在[0 1]区间内的数。一个样本同时属于所有的类,但是通过隶属度的大小来区分其差异。比如5度,可能属于冷这类的隶属度值为0.7,而属于热这个类的值为0.3。这样做就比较合理,硬聚类也可以看做模糊聚类的一个特例。你说的动态模糊分析法我在文献里很少见到好像并不主流,似乎没有专门的这样一种典型聚类算法,可能是个别人根据自己需要设计并命名的一种针对模糊聚类的改进方法,这个不好说了就。我见过有把每个不同样本加权的,权值自己确定,这样就冠以“动态"二字,这都是作者自己起的。也有别的也叫”动态“的,可能也不一样,似乎都是个别人自己提出的。至于文献,你可以到中国知网搜索博士或者硕士毕业论文,有关模糊聚类为题目的,在第一章引言里面必然会有详细的介绍,或者联系我,我就是做这方面的。希望能对你有所帮助,给点分吧,打的挺累的。

❻ 聚类的计算方法

传统的聚类分析计算方法主要有如下几种:
1、划分方法(partitioning methods)
给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
大部分划分方法是基于距离的。给定要构建的分区数k,划分方法首先创建一个初始化划分。然后,它采用一种迭代的重定位技术,通过把对象从一个组移动到另一个组来进行划分。一个好的划分的一般准备是:同一个簇中的对象尽可能相互接近或相关,而不同的簇中的对象尽可能远离或不同。还有许多评判划分质量的其他准则。传统的划分方法可以扩展到子空间聚类,而不是搜索整个数据空间。当存在很多属性并且数据稀疏时,这是有用的。为了达到全局最优,基于划分的聚类可能需要穷举所有可能的划分,计算量极大。实际上,大多数应用都采用了流行的启发式方法,如k-均值和k-中心算法,渐近的提高聚类质量,逼近局部最优解。这些启发式聚类方法很适合发现中小规模的数据库中小规模的数据库中的球状簇。为了发现具有复杂形状的簇和对超大型数据集进行聚类,需要进一步扩展基于划分的方法。
2、层次方法(hierarchical methods)
这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;
层次聚类方法可以是基于距离的或基于密度或连通性的。层次聚类方法的一些扩展也考虑了子空间聚类。层次方法的缺陷在于,一旦一个步骤(合并或分裂)完成,它就不能被撤销。这个严格规定是有用的,因为不用担心不同选择的组合数目,它将产生较小的计算开销。然而这种技术不能更正错误的决定。已经提出了一些提高层次聚类质量的方法。
3、基于密度的方法(density-based methods)
基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。这个方法的指导思想就是,只要一个区域中的点的密度大过某个阀值,就把它加到与之相近的聚类中去。代表算法有:DBSCAN算法、OPTICS算法、DENCLUE算法等;
4、基于网格的方法(grid-based methods)
这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;
很多空间数据挖掘问题,使用网格通常都是一种有效的方法。因此,基于网格的方法可以和其他聚类方法集成。
5、基于模型的方法(model-based methods)
基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。通常有两种尝试方向:统计的方案和神经网络的方案。
当然聚类方法还有:传递闭包法,布尔矩阵法,直接聚类法,相关性分析聚类,基于统计的聚类方法等。

❼ 有谁用matlab做过聚类算法

热心网友
聚类分析的概念主要是来自多元统计分析,例如,考虑二维坐标系上有散落的许多点,这时,需要对散点进行合理的分类,就需要聚类方面的知识。模糊聚类分析方法主要针对的是这样的问题:对于样本空间P中的元素含有多个属性,要求对其中的元素进行合理的分类。最终可以以聚类图的形式加以呈现,而聚类图可以以手式和自动生成两种方式进行,这里采用自动生成方式,亦是本文的程序实现过程中的一个关键环节。
这里所实现的基本的模糊聚类的主要过程是一些成文的方法,在此简述如下:
对于待分类的一个样本集U=,设其中的每个元素有m项指标,则可以用m维向量描述样本,即:ui=(i=1,2,...,n)。则其相应的模糊聚类按下列步骤进行:1)
标准化处理,将数据压缩至(0-1)区间上,这部分内容相对简单,介绍略。(参[1])2)
建立模糊关系:这里比较重要的环节之一,首先是根据“距离”或其它进行比较的观点及方法建立模糊相似矩阵,主要的“距离”有:Hamming
距离:
d(i,j)=sum(abs(x(i,k)-x(j,k)))
|
k
from
1
to
m
(|
k
from
1
to
m表示求和式中的系数k由1增至m,下同)Euclid
距离:
d(i,j)=sum((x(i,k)-x(j,k))^2)
|
k
from
1
to
m
非距离方法中,最经典的就是一个夹角余弦法:
最终进

阅读全文

与模糊聚类算法研究相关的资料

热点内容
教育系统源码达标 浏览:886
声卡驱动安装程序在哪个文件夹 浏览:60
钱还完了银行不给解压 浏览:169
linux的系统调用表 浏览:752
php怎么转换页面 浏览:546
我的世界买了服务器之后怎么开服 浏览:828
r1234yf汽车空调压缩机 浏览:145
ftp服务器地址栏 浏览:900
linux图形分区 浏览:965
安徽到辽宁源码 浏览:577
libs安卓的文件夹叫什么 浏览:871
生意圈app是什么意思 浏览:397
linuxarcgisserver 浏览:234
加密pdf怎么修改文件 浏览:138
红米刷机无命令怎么办 浏览:356
啥叫美国谷歌外包程序员 浏览:260
云服务器管家婆 浏览:440
发邮件命令 浏览:354
程序员好做吗工作好吗 浏览:886
云电脑服务器维护一个月多少钱 浏览:882