导航:首页 > 源码编译 > 极限开方运算法则的证明

极限开方运算法则的证明

发布时间:2024-05-13 03:05:26

1. 鍑芥暟鏋侀檺镄勮繍绠楁硶鍒欑殑璇佹槑

鍏堣瘉lim[f(x)+-g(x)]=limf(x)+-limg(x)锛屽啀璇乴im[f(x)/g(x)]=limf(x)/limg(x)=A/B,B涓崭负0銆

浠ヤ笅鏄鍑芥暟鏋侀檺镄勭浉鍏充粙缁嶏细

鍑芥暟鏋侀檺鏄楂樼瓑鏁板链锘烘湰镄勬傚康涔嬩竴锛屽兼暟绛夋傚康閮芥槸鍦ㄥ嚱鏁版瀬闄愮殑瀹氢箟涓婂畬鎴愮殑銆傚嚱鏁版瀬闄愭ц川镄勫悎鐞呜繍鐢ㄣ傚父鐢ㄧ殑鍑芥暟鏋侀檺镄勬ц川链夊嚱鏁版瀬闄愮殑鍞涓镐с佸眬閮ㄦ湁鐣屾с佷缭搴忔т互鍙婂嚱鏁版瀬闄愮殑杩愮畻娉曞垯鍜澶嶅悎鍑芥暟镄勬瀬闄愮瓑绛夈

闂棰樼殑鍏抽敭鍦ㄤ簬镓惧埌绗﹀悎瀹氢箟瑕佹眰镄 锛屽湪杩欎竴杩囩▼涓浼氱敤鍒颁竴浜涗笉绛夊纺鎶宸э纴渚嫔鏀剧缉娉绛夈1999骞寸殑镰旂┒鐢熻冭瘯璇曢树腑锛屾洿鏄鐩存帴钥冨疗浜呜幂敓瀵瑰畾涔夌殑鎺屾彙𨱍呭喌銆

鍦ㄨ繍鐢ㄤ互涓娄袱𨱒″幓姹傚嚱鏁扮殑鏋侀檺镞跺挨闇娉ㄦ剰浠ヤ笅鍏抽敭涔嬬偣銆备竴鏄鍏堣佺敤鍗曡皟链夌晫瀹氱悊璇佹槑鏀舵暃锛岀劧钖庡啀姹傛瀬闄愬笺备簩鏄搴旂敤澶规寻瀹氱悊镄勫叧阌鏄镓惧埌鏋侀檺鍊肩浉钖岀殑鍑芥暟 锛屽苟涓旇佹弧瓒虫瀬闄愭槸瓒嬩簬钖屼竴鏂瑰悜 锛屼粠钥岃瘉鏄庢垨姹傚缑鍑芥暟 镄勬瀬闄愬笺

浠ヤ笂璧勬枡鍙傝锏惧害锏剧戋斺斿嚱鏁版瀬闄

2. 鍑芥暟鏋侀檺镄勫紑鏂瑰叕寮忔庝箞璇佹槑锛

鍙浠ュ彇瀵规暟锛屾眰鏋侀檺銆

3. 极限的运算法则的证明怎么证明

极限的运算法则的证明怎么证明
先证lim[f(x)+-g(x)]=limf(x)+-limg(x)由limf(x)=A,limg(x)=B,得到f(x)=A+a,g(x)=B+b,其中a,b为无穷小,于是有f(x)+-g(x)=(A+a)+-(B+b)=(A+-B)+(a+-b)由于无穷小量a和b所以 lim[f(x)+-g(x)]=A+-B=limf(x)+-g(x)极限乘法的证明也类似,楼主可以自己证.再证lim[f(x)/g(x)]=limf(x)/limg(x)=A/B,B不为0同样的有f(x)=A+a,g(x)=B+b 设 r=f(x)/g(x)-A/B 即r=(A+a)*(B+b)-A/B=(Ba-Ab)/[B(B+b)]r看作2个数的乘积,其中Ba-Ab是无穷小,转而证明1/[B(B+b)]在x的某一邻域内有界,即证明了r的极限为0,命题成立.由于limg(x)=B由极限定理可知 存在x,当x属于u(x)时,|g(x)|>|B|/2,从而|1/g(x)|

阅读全文

与极限开方运算法则的证明相关的资料

热点内容
互联网程序员下班可以学吗 浏览:115
通达信海洋状态指标源码 浏览:548
工作压力大有什么好的解压方法 浏览:925
数字还可以怎样加密 浏览:116
为什么安卓没白鸟 浏览:237
程序员投行 浏览:325
java多线程读取文件 浏览:148
香港外贸服务器有什么好处 浏览:614
邓伦参加密室大逃脱结果变成团宠 浏览:849
购买文件服务器怎么选择 浏览:722
空调压缩机高压报警 浏览:502
u盘数控程序放哪个文件夹 浏览:856
python模拟微信登录其他APP 浏览:304
绑扎钢筋加密区规范 浏览:671
怎么更换手机壁纸安卓 浏览:808
闲鱼app卖手机怎么走验机 浏览:821
安卓三个按键音怎么关闭 浏览:64
esp8266手机app源码 浏览:713
服务器如何建立多个站点 浏览:151
加密狗可以在笔记本上做账吗 浏览:888