㈠ 矩阵计算方法法则
矩阵计算方法法则:
1.矩阵加法运算
矩阵之间也可以相加。把两个矩阵对应位置的单个元素相加,得到的新矩阵就是矩阵加法的结果。由其运算法则可知,只有行数和列数完全相同的矩阵才能进行加法运算。
矩阵之间相加没有顺序,假设A、B都是矩阵,则A+B=B+A。通常认为矩阵没有减法,若要与一个矩阵相减,在概念上是引入一个该矩阵的负矩阵,然后相加。A-B是A+(-B)的简写。图演示了两个三行三列矩阵的加法。
2.矩阵乘法运算
矩阵之间也可以进行乘法运算,但其运算过程相对复杂得多。与算术乘法不同,矩阵乘法并不是多个矩阵之和,它有自己的逻辑。其算法的具体描述为:假设m行n列的矩阵A和r行v列的矩阵B相乘得到矩阵C,则首先矩阵A和矩阵B必须满足n=r。
也就是说,第一个矩阵的列数必须和第二个矩阵的行数相同。在运算时,第一个矩阵A的第i行的所有元素同第二个矩阵B第j列的元素对应相乘,并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。
矩阵的值的计算公式
A=(aij)m×n。按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数就是矩阵的秩了。用初等行变换化成梯矩阵,梯矩阵中非零行数就是矩阵的秩。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。
㈡ 矩阵的计算方法是什么
1、确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。
图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。
(2)归纳矩阵算法扩展阅读
一般计算中,或者判断中还会遇到以下11种情况来判断是否为可逆矩阵:
1、秩等于行数。
2、行列式不为0。
3、行向量(或列向量)是线性无关组。
4、存在一个矩阵,与它的乘积是单位阵。
5、作为线性方程组的系数有唯一解。
6、满秩。
7、可以经过初等行变换化为单位矩阵。
8、伴随矩阵可逆。
9、可以表示成初等矩阵的乘积。
10、它的转置矩阵可逆。
11、它去左(右)乘另一个矩阵,秩不变。