导航:首页 > 源码编译 > 稀疏矩阵因子分解的快速算法

稀疏矩阵因子分解的快速算法

发布时间:2024-05-24 15:27:36

Ⅰ 稀疏矩阵的运算

M AT L A B中对满矩阵的运算和函数同样可用在稀疏矩阵中.结果是稀疏矩阵还是满矩阵,
这取决于运算符或者函数及下列的操作数:当函数用一个矩阵作为输入参数,输出参数为一个标量或者一个给定大小的向量时,输出参数的格式总是返回一个满阵形式,如命令s i z e.
当函数用一个标量或者一个向量作为输入参数,输出参数为一个矩阵时,输出参数的格式也总是返回一个满矩阵,如命令e y e.还有一些特殊的命令可以得到稀疏矩阵,如命令s p e y e.
对于单参数的其他函数来说,通常返回的结果和参数的形式是一样的,如d i a g.
对于双参数的运算或者函数来说,如果两个参数的形式一样,那么也返回同样形式的结果.在两个参数形式不一样的情况下,除非运算的需要,均以满矩阵的形式给出结果.
两个矩阵的组和[A B],如果A或B中至少有一个是满矩阵,则得到的结果就是满矩阵.
表达式右边的冒号是要求一个参数的运算符,遵守这些运算规则.
表达式左边的冒号不改变矩阵的形式. 假设有:
这是一个5×5的单位满矩阵和相应的稀疏矩阵.
(a) C = 5*B,结果为:
这是一个稀疏矩阵.
(b) D = A + B,给出的结果为:
这是一个满矩阵.
(c) x = B h,结果为:
这是一个满向量.
有许多命令可以对非零元素进行操作.
命令集8 9矩阵的非零元素
n n z ( A )求矩阵A中非零元素的个数.它既可求满矩阵也可求稀疏矩阵.
s p y ( A )画出稀疏矩阵A中非零元素的分布.也可用在满矩阵中,在
这种情况下,只给出非零元素的分布.
s p y ( A , c s t r , s i z e )用指定的颜色c s t r(见表1 3 - 1 )和在s i z e规定的范围内画出稀疏
矩阵A中非零元素的分布.
n o n z e r o s ( A )按照列的顺序找出矩阵A中非零的元素.
s p o n e s ( A )把矩阵A中的非零元素全换为1.
s p a l l o c ( m , n ,产生一个m×n阶只有n z m a x个非零元素的稀疏矩阵.这样可以
n z m a x )有效地减少存储空间和提高运算速度.
n z m a x ( A )给出为矩阵A中非零元素分配的内存数.不一定和n n z ( A )得
到的数相同;参见s p a r s e或者s p a l l o c.
i s s p a r s e ( A )如果矩阵A是稀疏矩阵,则返回1;否则返回0.
s p f u n ( f c n , A )用A中所有非零元素对函数f c n求值,如果函数不是对稀疏矩
阵定义的,同样也可以求值.
s p r a n k( A )求稀疏矩阵A的结构秩.对于所有的矩阵来说,都有
s p r a n k ( A)≥r a n k ( A ). 用下面的命令定义稀疏矩阵:
创建一个大矩阵:
Big=kron(A, A)
这个矩阵B i g是什么样子呢?
K r o n e c k e r张量积给出一个大矩阵,它的元素是矩阵A的元素之间可能的乘积.因为参量都是稀疏矩阵,所以得到的矩阵也是一个稀疏矩阵.可以用命令 w h o s和i s s p a r s e来确认一下.
查看矩阵B i g的结构图,可输入s p y ( B i g ),结构图如右图所示. 从图中可以看出B i g是一个块双对角矩阵. MATLAB中有四个基本稀疏矩阵,它们是单位矩阵,随机矩阵,对称随机矩阵和对角矩阵.
命令集9 0单位稀疏矩阵
s p e y e ( n )生成n×n的单位稀疏矩阵.
s p e y e ( m , n )生成m×n的单位稀疏矩阵.
命令speye(A) 得到的结果和s p a r s e ( e y e ( A ) )是一样的,但是没有涉及到满阵的存储.
命令集9 1随机稀疏矩阵
s p r a n d ( A )生成与A有相同结构的随机稀疏矩阵,且元素服从均匀分布.
s p r a n d ( m , n , d e n s )生成一个m×n的服从均匀分布的随机稀疏矩阵,有d e n s×m×
n个非零元素,0≤d e n s≤1.参数d e n s是非零元素的分布密度.
s p r a n d ( m , n , d e n s ,生成一个近似的条件数为1 /rc,大小为m×n的随机稀疏矩
r c )阵.如果rc=rc是一个长度为l≤l ( m i n (m, n) )的向量,那么
矩阵将rci作为它l个奇异值的第一个,其他的奇异值为0.
s p r a n d n ( A )生成与A有相同结构的随机稀疏矩阵,且元素服从正态分布.
s p r a n d n ( m , n , d e n s ,生成一个m×n的服从正态分布的随机稀疏矩阵,和sprand
r c )一样.
s p r a n d s y m ( S )生成一个随机对称稀疏矩阵.它的下三角及主对角线部分与S的结构相同,矩阵元素服从正态分布.
s p r a n d s y m ( n , d e n s )生成一个m×n的随机对称稀疏矩阵.矩阵元素服从正态分布,分布密度为d e n s.
s p r a n d s y m ( n , d e n s ,生成一个近似条件数为1 /rc的随机对称稀疏矩阵.元素以0r c )对称分布,但不是正态分布.如果rc=rc是一个向量,则矩阵有特征值rci.也就是说,如果rc是一个正向量,则矩阵是正定矩阵.
s p r a n d s y m ( n , d e n s ,生成一个正定矩阵.如果k= 1,则矩阵是由一正定对称矩r c , k )阵经随机J a c o b i旋转得到的,其条件数正好等于1 /rc;如果k= 2,则矩阵为外积的换位和,其条件数近似等于1 /rc.
s p r a n d s y m ( S , d e n s ,生成一个与矩阵S结构相同的稀疏矩阵,近似条件数为1 /rc.
r c , 3 )参数d e n s被忽略,但是这个参数在这个位置以便函数能确认最后两个参数的正确与否. (a) 假设有矩阵A:
输入R a n d o m = s p r a n d n ( A ),可得到随机稀疏矩阵:
矩阵中随机数的位置和矩阵A中非零元素的位置相同.
(b) 对于( a )中的矩阵A,输入:
B = s p r a n d s y m ( A )
结果为:
这是一个用矩阵A的下三角及主对角线部分创建的对称矩阵,在非零元素的位置用随机数作为元素值.
用命令s p d i a g s可以取出对角线元素,并创建带状对角矩阵.假设矩阵A的大小为m×n,
在p个对角线上有非零元素.B的大小为m i n (m×n)×p,它的列是矩阵A的对角线.向量d的长度为p,其整型分量给定了A的对角元:
di0 主对角线上的对角线
命令集9 2对角稀疏矩阵
[ B , d ] = s p d i a g s ( A )求出A中所有的对角元,对角元保存在矩阵B中,它们的下标保存在向量d中.
s p d i a g s ( A , d )生成一个矩阵,这个矩阵包含有矩阵A中向量d规定的对角元.
s p d i a g s ( B , d , A )生成矩阵A,用矩阵B中的列替换d定义的对角元.
A = s p d i a g s ( B , d , m , n )用保存在由d定义的B中的对角元创建稀疏矩阵A.
例11 . 4给出了如何使用s p d i a g s命令来解普通微分方程组. 在许多实际应用中要保留稀疏矩阵的结构,但是在计算过程中的中间结果会减弱它的稀疏性,如L U分解.这就会导致增加浮点运算次数和存储空间.为了避免这种情况发生,在第稀疏矩阵1 2 9
M AT L A B中用命令对矩阵进行重新安排.这些命令都列在下面的命令集9 3中.通过h e l p命令
可以得到每个命令更多的帮助信息,也可见h e l p d e s k.
命令集9 3矩阵变换
c o l m m d ( A )返回一个变换向量,使得矩阵A列的秩为最小.
s y m m m d ( A )返回使对称矩阵秩为最小的变换.
s y m r c m ( A )矩阵A的C u t h i l l - M c K e e逆变换.矩阵A的非零元素在主对角线附近.
c o l p e r m ( A )返回一个矩阵A的列变换的向量.列按非零元素升序排列.有时这是L U因式分解前有用的变换:lu(A(:, j)).如果A是一个对称矩阵,对行和列进行排序,这有利于C h o l e s k y分解:chol(A(j, j)).
r a n d p e r m ( n )给出正数1,2,. . .,n的随机排列,可以用来创建随机变换矩阵.
d m p e r m ( A )对矩阵A进行D u l m a g e - M e n d e l s o h n分解,输入help dmperm可得更多信息. 创建一个秩为4的变换矩阵,可输入:
一旦运行p e r m = r a n d p e r m ( 4 ),就会得到:
给出的变换矩阵为:
如果矩阵A为:
输入命令:
运行结果为:
有两个不完全因式分解命令,它们是用来在解大线性方程组前进行预处理的.用h e l p d e s k命令可得更多信息.命令集9 4不完全因式分解c h o l i n c ( A , o p t )进行不完全C h o l e s k y分解,变量o p t取下列值之一:
d r o p t o l指定不完全分解的舍入误差,0给出完全分解.
m i c h o l如果m i c h o l = 1,则从对角线上抽取出被去掉的元素.
r d i a g用s q r t ( d r o p t o l*n o r m ( X ( : , j ) ) )代替上三角分
解因子中的零元素,j为零元素所在的列.
[ L , U , P ]=返回矩阵X的不完全分解得到的三个矩阵L,U和P,变量o p t取
l u i n c ( X , o p t )下列值之一:
d r o p t o l指定分解的舍入误差.
m i l u改变分解以便从上三角角分解因子中抽取被去掉的列元素.
u d i a g用d r o p t o l值代替上三角角分解因子中的对角线上的零元素.
t h r e s h中心极限.
解稀疏线性方程组既可用左除运算符解,也可用一些特殊命令来解.
命令集9 5稀疏矩阵和线性方程组
s p p a r m s ( k e y s t r , o p )设置稀疏矩阵算法的参数,用help spparms可得详细信息.
s p a u g m e n t ( A , c )根据[ c*l A; A' 0 ]创建稀疏矩阵,这是二次线性方程组的最
小二乘问题.参见7 . 7节.
s y m b f a c t ( A )给出稀疏矩阵的C h o l e s k y和L U因式分解的符号分解因子.
用help symbfact可得详细信息.
稀疏矩阵的范数计算和普通满矩阵的范数计算有一个重要的区别.稀疏矩阵的欧几里德范数不能直接求得.如果稀疏矩阵是一个小矩阵,则用n o r m ( f u l l ( A ) )来计算它的范数;但是对于大矩阵来说,这样计算是不可能的.然而M AT L A B可以计算出欧几里德范数的近似值,在计算条件数时也是一样.
命令集9 6稀疏矩阵的近似欧几里德范数和条件数
n o r m e s t ( A )计算A的近似欧几里德范数,相对误差为1 0-6.
n o r m e s t ( A , t o l )计算A的近似欧几里德范数,设置相对误差t o l,而不用缺省时的1 0-6.
[ n r m , n i t ] =计算近似n r m范数,还给出计算范数迭代的次数n i t.
n o r m e s t ( A )
c o n d e s t ( A )求矩阵A条件数的1 -范数中的下界估计值.
[ c , v ]=求矩阵A的1 -范数中条件数的下界估计值c和向量v,使得
c o n d e s t ( A , t r )| |Av| | = ( | |A| | | |v| | ) / c.如果给定t r,则给出计算的过程.t r= 1,
给出每步过程;t r=-1,给出商c / r c o n d ( A ). 假设给出:
用n o r m A p p r o x = n o r m e s t ( S p r s )计算出:
用t h e N o r m = n o r m ( f u l l ( S p r s ) )得:
为了找到它们之间的差别,计算d i f f e r e n c e = t h e N o r m - n o r m A p p r o x,得:
在许多应用中,n o r m e s t计算得到的近似值是一个很好的近似欧几里德范数,它的计算步数要比n o r m要少得多;可参见7 . 6节.
用e t r e e命令来找到稀疏对称矩阵的消元树,用向量f来描述消元树,还可用e t r e e p l o t命令画出来.元素fi是矩阵的上三角C h o l e s k y分解因子中i行上第1非零元素的列下标.如果有非零元素,则fi= 0.消元树可以这样来建立:
节点i是fi的孩子,或者如果fi= 0,则节点i是树的根节点.
命令集9 7矩阵的消元树
e t r e e ( A )求A的消元树向量f,这个命令有可选参数;输入h e l p
e t r e e获取帮助.
e t r e e p l o t ( A )画出向量f定义的消元树图形.
t r e e p l o t ( p , c , d )画出指针向量p的树图形,参数c和d分别指定节点的颜色和分支数.e t r e e p l o t可以调用这个命令.
t r e e l a y o u t显示树的结构,t r e e p l o t可以调用这个命令. 假设有对称稀疏矩阵B:
运行命令b t r e e = e t r e e ( B ),结果为:
开始的数字2不难理解,它是矩阵的第1列上第1个非零元素的行数,它决定了在C h o l e s k y分解因子的第1行第2列处有一个非零元素.当缩减第1列的元素时就得到第2列的数字5.B在缩减后,在( 5 , 2 )位置的元素是非零的,这样消元树向量中第2个元素的值为5.
s p y ( c h o l ( B ) )给出了C h o l e s k y分解因子的结构图,如图9 - 2所示:
图9-2 Cholesky分解结构图
图9-3 矩阵B的消元树
这个向量消元树可以这样来建立:上三角中只有一行有非零元素,节点8,因此这就是树
唯一的根.节点1是节点2的孩子,节点2和3是节点5的孩子,而节点5是节点6的孩子.节点4和6是节点7的孩子,而节点7又是节点8的孩子,即根的孩子.
命令e t r e e p l o t ( B )给出了树的结构图,如图9 - 3所示.
消元树的形状取决于列和行序,它可以用来分析消元过程.
用g p l o t命令可以画出坐标和矩阵元素间的联系图形.必须在n×2的矩阵中给出n个坐标,
矩阵的每一行作为一个点.这样就创建出点点之间连接的n×n矩阵,如果点4连接到点8,则(4, 8)的值为1.由于是一个大矩阵,而且非零元素较少,所以它应该被建成稀疏矩阵.
这个图可以说明网络问题,如传递问题.它还包含有线性方程组中未知量之间的相关信息.
命令集9 8网络图形
g p l o t ( A , K )如果矩阵A的a(i, j)不为0,则将点ki连接到点kj.K是一个n×
2的坐标矩阵,A是一个n×n的关联矩阵.
g p l o t ( A , K , s t r )用字符串s t r给定的颜色和线型画出的同上图形.字符串s t r的
取值参见表1 3 - 1.
[ X , A ] = u n m e s h ( E )求网格边界矩阵E的L a p l a c e矩阵A和网格点的坐标矩阵X.
例七
假设有下面的坐标矩阵K和关联矩阵A:
矩阵A在稀疏化后,用命令g p l o t ( A , K )画出图9 - 4,给出了点(0, 1)和点(4, 1)之间所有可能的路径.

Ⅱ 07_推荐系统算法详解

     基于人口统计学的推荐与用户画像、基于内容的推荐、基于协同过滤的推荐。

1、基于人口统计学的推荐机制( Demographic-based Recommendation)是一种最易于实现的推荐方法,它只是简单的根据系统用户的基本信息发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前用户。

2、对于没有明确含义的用户信息(比如登录时间、地域等上下文信息),可以通过聚类等手段,给用户打上分类标签。

3、对于特定标签的用户,又可以根据预设的规则(知识)或者模型,推荐出对应的物品。

4、用户信息标签化的过程一般又称为 用户画像 ( User Profiling)。

(1)用户画像( User Profile)就是企业通过收集与分析消费者社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌作是企业应用大数据技术的基本方式。

(2)用户画像为企业提供了足够的信息基础,能够帮助企业快速找到精准用户群体以及用户需求等更为广泛的反馈信息。

(3)作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础。

1、 Content- based Recommendations(CB)根据推荐物品或内容的元数据,发现物品的相关性,再基于用户过去的喜好记录,为用户推荐相似的物品。

2、通过抽取物品内在或者外在的特征值,实现相似度计算。比如一个电影,有导演、演员、用户标签UGC、用户评论、时长、风格等等,都可以算是特征。

3、将用户(user)个人信息的特征(基于喜好记录或是预设兴趣标签),和物品(item)的特征相匹配,就能得到用户对物品感兴趣的程度。在一些电影、音乐、图书的社交网站有很成功的应用,有些网站还请专业的人员对物品进行基因编码/打标签(PGC)。

4、 相似度计算:

5、对于物品的特征提取——打标签(tag)

        - 专家标签(PGC)

        - 用户自定义标签(UGC)

        - 降维分析数据,提取隐语义标签(LFM)

     对于文本信息的特征提取——关键词

        - 分词、语义处理和情感分析(NLP)

        - 潜在语义分析(LSA)

6、 基于内容推荐系统的高层次结构

7、 特征工程

(1)特征( feature):数据中抽取出来的对结果预测有用的信息。

         特征的个数就是数据的观测维度。

         特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

         特征工程一般包括特征清洗(采样、清洗异常样本),特征处理和特征选择。

         特征按照不同的数据类型分类,有不同的特征处理方法:数值型、类别型、时间型、统计型。

(2)数值型特征处理

        用连续数值表示当前维度特征,通常会对数值型特征进行数学上的处理,主要的做法是归一化和离散化。

        * 幅度调整归一化:

            特征与特征之间应该是平等的,区别应该体现在 特征内部 。

            例如房屋价格和住房面积的幅度是不同的,房屋价格可能在3000000~15000000(万)之间,而住房面积在40-300(平方米)之间,那么明明是平等的两个特征,输入到相同的模型中后由于本身的幅值不同导致产生的效果不同,这是不合理的

                        

        * 数值型特征处理——离散化

        离散化的两种方式:等步长——简单但不一定有效;等频——min -> 25% -> 75% -> max

        两种方法对比:

            等频的离散化方法很精准,但需要每次都对数据分布进行一遍从新计算,因为昨天用户在淘宝上买东西的价格分布和今天不一定相同,因此昨天做等频的切分点可能并不适用,而线上最需要避免的就是不固定,需要现场计算,所以昨天训练出的模型今天不一定能使用。

            等频不固定,但很精准,等步长是固定的,非常简单,因此两者在工业上都有应用。

(3) 类别型特征处理

        类别型数据本身没有大小关系,需要将它们编码为数字,但它们之间不能有预先设定的大小关系,因此既要做到公平,又要区分开它们,那么直接开辟多个空间。

        One-Hot编码/哑变量:One-Hot编码/哑变量所做的就是将类别型数据平行地展开,也就是说,经过One-Hot编码哑变量后,这个特征的空间会膨胀。

(4) 时间型特征处理

        时间型特征既可以做连续值,又可以看做离散值。

        连续值:持续时间(网页浏览时长);间隔时间(上一次购买/点击离现在的时间间隔)。

        离散值:一天中哪个时间段;一周中的星期几;一年中哪个月/星期;工作日/周末。

(5) 统计型特征处理

        加减平均:商品价格高于平均价格多少,用户在某个品类下消费超过多少。

        分位线:商品属于售出商品价格的分位线处。

        次序性:商品处于热门商品第几位。

        比例类:电商中商品的好/中/差评比例。

8、 推荐系统常见反馈数据 :

9、 基于UGC的推荐

     用户用标签来描述对物品的看法,所以用户生成标签(UGC)是联系用户和物品的纽带,也是反应用户兴趣的重要数据源。

    一个用户标签行为的数据集一般由一个三元组(用户,物品,标签)的集合表示,其中一条记录(u,i,b)表示用户u给物品打上了标签b。

    一个最简单的算法:

        - 统计每个用户最常用的标签

        - 对于每个标签,统计被打过这个标签次数最多的物品

        - 对于一个用户,首先找到他常用的标签,然后找到具有这些标签的最热门的物品,推荐给他

        - 所以用户u对物品i的兴趣公式为 ,其中 使用户u打过标签b的次数, 是物品i被打过标签b的次数。

    简单算法中直接将用户打出标签的次数和物品得到的标签次数相乘,可以简单地表现出用户对物品某个特征的兴趣。

    这种方法倾向于给热门标签(谁都会给的标签,如“大片”、“搞笑”等)、热门物品(打标签人数最多)比较大的权重,如果一个热门物品同时对应着热门标签,那它就会“霸榜”,推荐的个性化、新颖度就会降低。

    类似的问题,出现在新闻内容的关键字提取中。比如以下新闻中,哪个关键字应该获得更高的权重?

10、 TF-IDF:词频逆文档频率 ( Term Frequency- -Inverse Document Frequency,TF-DF)是一种用于资讯检索与文本挖掘的常用加权技术。

        TFDF是一种统计方法,用以评估一个字词对于一个文件集或一个语料库中的其中份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

                    TFIDF=TF IDF

         TF-IDF的主要思想是 :如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

        TF-DF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。

         词频( Term Frequency,TF) :指的是某一个给定的词语在该文件中出现的频率。这个数字是对词数的归一化,以防止偏向更长的文件。(同一个词语在长文件里可能会比短文件有更高的词数,而不管该词语重要与否。) ,其中 表示词语 i 在文档 j 中出现的频率, 表示 i 在 j 中出现的次数, 表示文档 j 的总词数。

         逆向文件频率( Inverse Document Frequency,IDF) :是一个词语普遍重要性的度量,某一特定词语的IDF,可以由总文档数目除以包含该词语之文档的数目,再将得到的商取对数得到 ,其中 表示词语 i 在文档集中的逆文档频率,N表示文档集中的文档总数, 表示文档集中包含了词语 i 的文档数。

(11) TF-IDF对基于UGC推荐的改进 : ,为了避免热门标签和热门物品获得更多的权重,我们需要对“热门进行惩罚。

          借鉴TF-IDF的思想,以一个物品的所有标签作为“文档”,标签作为“词语”,从而计算标签的“词频”(在物品所有标签中的频率)和“逆文档频率”(在其它物品标签中普遍出现的频率)。

           由于“物品i的所有标签” 应该对标签权重没有影响,而 “所有标签总数” N 对于所有标签是一定的,所以这两项可以略去。在简单算法的基础上,直接加入对热门标签和热门物品的惩罚项: ,其中, 记录了标签 b 被多少个不同的用户使用过, 记录了物品 i 被多少个不同的用户打过标签。

(一)协同过滤(Collaborative Filtering, CF)

1、基于协同过滤(CF)的推荐:基于内容( Content based,CB)主要利用的是用户评价过的物品的内容特征,而CF方法还可以利用其他用户评分过的物品内容。

    CF可以解决CB的一些局限:

         - 物品内容不完全或者难以获得时,依然可以通过其他用户的反馈给出推荐。

        - CF基于用户之间对物品的评价质量,避免了CB仅依赖内容可能造成的对物品质量判断的干。

        - CF推荐不受内容限制,只要其他类似用户给出了对不同物品的兴趣,CF就可以给用户推荐出内容差异很大的物品(但有某种内在联系)

    分为两类:基于近邻和基于模型。

2、基于近邻的推荐系统:根据的是相同“口碑”准则。是否应该给Cary推荐《泰坦尼克号》?

(二)基于近邻的协同过滤

1、 基于用户(User-CF): 基于用户的协同过滤推荐的基本原理是,根据所有用户对物品的偏好,发现与当前用户口味和偏好相似的“邻居”用户群,并推荐近邻所偏好的物品。

     在一般的应用中是采用计算“K-近邻”的算法;基于这K个邻居的历史偏好信息,为当前用户进行推荐。

    User-CF和基于人口统计学的推荐机制:

        - 两者都是计算用户的相似度,并基于相似的“邻居”用户群计算推荐。

        - 它们所不同的是如何计算用户的相似度:基于人口统计学的机制只考虑用户本身的特征,而基于用户的协同过滤机制可是在用户的历史偏好的数据上计算用户的相似度,它的基本假设是,喜欢类似物品的用户可能有相同或者相似的口味和偏好。

2、基于物品(Item-CF):基于项目的协同过滤推荐的基本原理与基于用户的类似,只是使用所有用户对物品的偏好,发现物品和物品之间的相似度,然后根据用户的历史偏好信息,将类似的物品推荐给用户。

    Item-CF和基于内容(CB)的推荐

       - 其实都是基于物品相似度预测推荐,只是相似度计算的方法不一样,前者是从用户历史的偏好推断,而后者是基于物品本身的属性特征信息。

   同样是协同过滤,在基于用户和基于项目两个策略中应该如何选择呢?

        - 电商、电影、音乐网站,用户数量远大于物品数量。

        - 新闻网站,物品(新闻文本)数量可能大于用户数量。

3、 User-CF和Item-CF的比较

     同样是协同过滤,在User-CF和ltem-CF两个策略中应该如何选择呢?

     Item-CF应用场景

       -  基于物品的协同过滤( Item-CF ) 推荐机制是 Amazon在基于用户的机制上改良的一种策略因为在大部分的Web站点中,物品的个数是远远小于用户的数量的,而且物品的个数和相似度相对比较稳定,同时基于物品的机制比基于用户的实时性更好一些,所以 Item-CF 成为了目前推荐策略的主流。

     User-CF应用场景

        - 设想一下在一些新闻推荐系统中,也许物品一一也就是新闻的个数可能大于用户的个数,而且新闻的更新程度也有很快,所以它的相似度依然不稳定,这时用 User-cf可能效果更好。

    所以,推荐策略的选择其实和具体的应用场景有很大的关系。

4、 基于协同过滤的推荐优缺点

 (1)基于协同过滤的推荐机制的优点:

        它不需要对物品或者用户进行严格的建模,而且不要求对物品特征的描述是机器可理解的,所以这种方法也是领域无关的。

       这种方法计算出来的推荐是开放的,可以共用他人的经验,很好的支持用户发现潜在的兴趣偏好。

(2)存在的问题

        方法的核心是基于历史数据,所以对新物品和新用户都有“冷启动”的问题。

        推荐的效果依赖于用户历史好数据的多少和准确性。

        在大部分的实现中,用户历史偏好是用稀疏矩阵进行存储的,而稀疏矩阵上的计算有些明显的问题,包括可能少部分人的错误偏好会对推荐的准确度有很大的影响等等。

        对于一些特殊品味的用户不能给予很好的推荐。

(三)基于模型的协同过滤

1、基本思想

(1)用户具有一定的特征,决定着他的偏好选择

(2)物品具有一定的特征,影响着用户需是否选择它。

(3)用户之所以选择某一个商品,是因为用户特征与物品特征相互匹配。

    基于这种思想,模型的建立相当于从行为数据中提取特征,给用户和物品同时打上“标签”;这和基于人口统计学的用户标签、基于内容方法的物品标签本质是一样的,都是特征的提取和匹配。

    有显性特征时(比如用户标签、物品分类标签)我们可以直接匹配做出推荐;没有时,可以根据已有的偏好数据,去发据出隐藏的特征,这需要用到隐语义模型(LFM)。

2、基于模型的协同过滤推荐,就是基于样本的用户偏好信息,训练一个推荐模型,然后根据实时的用户喜好的信息进行预测新物品的得分,计算推荐

    基于近邻的推荐和基于模型的推荐

        - 基于近邻的推荐是在预测时直接使用已有的用户偏好数据,通过近邻数据来预测对新物品的偏好(类似分类)

        - 而基于模型的方法,是要使用这些偏好数据来训练模型,找到内在规律,再用模型来做预测(类似回归)

    训练模型时,可以基于标签内容来提取物品特征,也可以让模型去发据物品的潜在特征;这样的模型被称为 隐语义模型 ( Latent Factor Model,LFM)。

(1)隐语义模型(LFM):用隐语义模型来进行协同过滤的目标:

            - 揭示隐藏的特征,这些特征能够解释为什么给出对应的预测评分

            - 这类特征可能是无法直接用语言解释描述的,事实上我们并不需要知道,类似“玄学”

        通过矩阵分解进行降维分析

            - 协同过滤算法非常依赖历史数据,而一般的推荐系统中,偏好数据又往往是稀疏的;这就需要对原始数据做降维处理。

            - 分解之后的矩阵,就代表了用户和物品的隐藏特征

        隐语义模型的实例:基于概率的隐语义分析(pLSA)、隐式迪利克雷分布模型(LDA)、矩阵因子分解模型(基于奇异值分解的模型,SVD)

(2)LFM降维方法——矩阵因子分解

(3)LFM的进一步理解

    我们可以认为,用户之所以给电影打出这样的分数,是有内在原因的,我们可以挖掘出影响用户打分的隐藏因素,进而根据未评分电影与这些隐藏因素的关联度,决定此未评分电影的预测评分。

    应该有一些隐藏的因素,影响用户的打分,比如电影:演员、题材、年代…甚至不定是人直接可以理解的隐藏因子。

    找到隐藏因子,可以对user和Iiem进行关联(找到是由于什么使得user喜欢/不喜欢此Item,什么会决定user喜欢/不喜欢此item),就可以推测用户是否会喜欢某一部未看过的电影。

(4)矩阵因子分解

(5)模型的求解——损失函数

(6)模型的求解算法——ALS

    现在,矩阵因子分解的问题已经转化成了一个标准的优化问题,需要求解P、Q,使目标损失函数取最小值。

    最小化过程的求解,一般采用随机梯度下降算法或者交替最小二乘法来实现交替最小二乘法( Alternating Least Squares,ALS)

    ALS的思想是,由于两个矩阵P和Q都未知,且通过矩阵乘法耦合在一起,为了使它们解耦,可以先固定Q,把P当作变量,通过损失函数最小化求出P,这就是一个经典的最小二乘问题;再反过来固定求得的P,把Q当作变量,求解出Q:如此交替执行,直到误差满足阅值条件,或者到达迭代上限。

(7)梯度下降算法

阅读全文

与稀疏矩阵因子分解的快速算法相关的资料

热点内容
模拟电子技术第四版pdf 浏览:959
解压车贷后gps怎么找 浏览:350
源码数据库怎么配备 浏览:136
知乎程序员小灰 浏览:574
新概念英语第一册书pdf 浏览:5
安卓ans文件怎么打开 浏览:893
选择题改进分治算法的方法有 浏览:108
下载云服务器有什么好处 浏览:23
江苏机架式服务器云主机 浏览:411
linux补全命令 浏览:514
我要打命令 浏览:970
御人pdf 浏览:390
小米手机怎么发送文件夹用qq 浏览:917
找人一起玩用什么app好 浏览:398
程序员最烦的4件事 浏览:485
怎么查ice服务器 浏览:760
excel加密不可以复制 浏览:308
py编译器的键盘输入在哪 浏览:226
云服务器和深度学习 浏览:102
交叉编译标准输出 浏览:24