1. python爬虫源代码没有但检查
python爬虫源代码没有但检查可以通过5个步骤进行解决。
1、提取列车Code和No信猜数侍息。
2、毕嫌找到url规律,根据Code和No变化实现多个网页数据爬取穗吵。
3、使用PhantomJS模拟浏览器爬取源代码。
4、用bs4解析源代码,获取所需的途径站数据。
5、用csv库存储获得的数据。
2. 如何通过网络爬虫获取网站数据
这里以python为例,简单介绍一下如何通过python网络爬虫获取网站数据,主要分为静态网页数据的爬埋山差取和动态网页数据的爬取,实验环境win10+python3.6+pycharm5.0,主要内容如下:
静态网页数据
这里的数据都嵌套在网页源码中,所以直接requests网页源码进行解析就行,下面我简单介绍一下,这里以爬取糗事网络上的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的字段包括昵称、内容、好笑数和评论数:
接着查看网页源码,如下,可以看的出来,所有的数据都嵌套在网页中:
2.然后针对以上网页结构,我们就可以直接编写爬虫代码,解析网页并提取出我们需要的数据了,测试代码如下,非常简单,主要用到requests+BeautifulSoup组合,其中requests用于获取网页源码,BeautifulSoup用于解析网页提取数据:
点击运行这个程序,效果如下,已经成功爬取了到我们需要的数据:
动态网页数据
这里的数据都没有在网页源码中(所以直接请求页面是获取不到任何数据的),大部分情况下都是存储在一唯唯个json文件中,只有在网页更新的时候,才会加载数据,下面我简单介绍一下这种方式,这里以爬取人人贷上面的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的数据包括年利率,借款标题,期限,金额和进度:
接着按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找打动态加载的json文件,如下,也就是我们需要爬弯皮取的数据:
2.然后就是根据这个json文件编写对应代码解析出我们需要的字段信息,测试代码如下,也非常简单,主要用到requests+json组合,其中requests用于请求json文件,json用于解析json文件提取数据:
点击运行这个程序,效果如下,已经成功爬取到我们需要的数据:
至此,我们就完成了利用python网络爬虫来获取网站数据。总的来说,整个过程非常简单,python内置了许多网络爬虫包和框架(scrapy等),可以快速获取网站数据,非常适合初学者学习和掌握,只要你有一定的爬虫基础,熟悉一下上面的流程和代码,很快就能掌握的,当然,你也可以使用现成的爬虫软件,像八爪鱼、后羿等也都可以,网上也有相关教程和资料,非常丰富,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
3. python爬虫 源码
import os,requests
from bs4 import BeautifulSoup
headers ={
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:75.0) Gecko/20100101 Firefox/75.0'
}
for i in range(105,200):
try:
url = 'https://pvp.qq.com/web201605/herodetail/' + str(i) +'.shtml'
response = requests.get(url,headers)
response.encoding = 'gbk'
soup = BeautifulSoup(response.text,'html.parser')
# skill_name = soup.find('p','skill-name')
# skill_desc = soup.find('p','skill-desc')
# print(skill_name.text)
# print(skill_desc.text)
name = soup.find("h2", "cover-name").text
# print(name)
story = soup.find('div', 'pop-bd').text
if story =='\n':
print("\n没有【%d】%s的故事!"%(i,name))
else:
story_ = story.replace('。' ,'。\n' )
story_ = story.replace('\n' ,'\t>>>' )
print(story_[0:30]+"...")
# os.mkdir('C:\\Users\\Crystal\\Desktop\\英雄故事2')
# os.mkdir('C:\\Users\\28459\\Desktop\\测试\\')
os.chdir('C:\\Users\\28459\\Desktop\\测试\\')
open('%s'%name + '.txt' ,'w').write(story_)
print('【%d】%s的故事已保存!'%(i,name))
print()
except AttributeError:
print("\n没有编号为%d的英雄!"%i)
4. python鐖铏浠g爜鍦ㄥ摢閲屽啓python鐖铏浠g爜
鍏充簬python鐖铏浠g爜鍦ㄥ摢閲屽啓锛宲ython鐖铏浠g爜杩欎釜寰埚氢汉杩树笉鐭ラ亾锛屼粖澶╂潵涓哄ぇ瀹惰В绛斾互涓婄殑闂棰桡纴鐜板湪璁╂垜浠涓璧锋潵鐪嬬湅钖э紒
1銆佹墦寮python鐖铏浠g爜镄勬簮镰佺洰褰曪纴阃氩父寮濮嬫枃浠朵负锛***.py,***.py,app.py瀵绘垒链夋病链夌被浼肩殑python鏂囦欢,濡傛灉娌℃湁銆
2銆佽风湅婧愮爜镄剅eadme鏂囦欢锛岄噷闱浼氭湁璇存槑锛岃嫢浠ヤ笂閮芥病链夈
3銆佷綘鍙鑳介渶瑕乸ython鏂归溃镄勭煡璇嗭纴镊宸卞幓鐪嬫簮镰侊纴镓惧埌鍏ュ彛鏂规硶骞惰繍琛屾垒鍒板叆鍙f枃浠跺悗銆
4銆佸湪褰揿墠鐩褰曟墦寮鎺у埗鍙帮纴杈揿叆python姝e父𨱍呭喌涓嬩细鍑虹幇涓嫔浘镄勬彁绀猴纴鑻ユ病链夈
5銆佽锋镆ュ綋鍓峱c镄刾ython鐜澧冩槸钖︽湁琚姝g‘瀹夎呮渶钖庯纴杩愯屽叆鍙f枃浠,杈揿叆python ***.py(鍏ュ彛鏂囦欢),杩愯岀埇铏銆
5. Python爬虫如何写
Python的爬虫库其实很多,像常见的urllib,requests,bs4,lxml等,初始入门爬虫的话,可以学习一下requests和bs4(BeautifulSoup)这2个库,比较简单,也易学习,requests用于请求页面,BeautifulSoup用于解析页面,下面我以这2个库为基础,简单介绍一下Python如何爬取网页静态数据和网页动态数据,实验环境win10+python3.6+pycharm5.0,主要内容如下:
Python爬取网页静态数据
这个就很简单,直接根据网址请求页面就行,这里以爬取糗事网络上的内容为例:
1.这里假设我们要爬取的文本内容如下,主要包括昵称、内容、好笑数和评论数这4个字段:
打开网页源码,对应网页结构如下,很简单,所有字段内容都可以直接找到:
2.针对以上网页结构,我们就可以编写相关代码来爬取网页数据了,很简单,先根据url地址,利用requests请求页面,然后再利用BeautifulSoup解析数据(根据标签和属性定位)就行,如下:
程序运行截图如下,已经成功爬取到数据:
Python爬取网页动态数据
很多种情况下,网页数据都是动态加载的,直接爬取网页是提取不到任何数据的,这时就需要抓包分析,找到动态加载的数据,一般情况下就是一个json文件(当然,也敬链誉可能是其他类型的文件,像xml等),然后请求解析这个json文件,就能获取到我们需要的数据,这里以爬取人人贷上面的散标数据为例:
1.这里假设我们爬取的数据如下,主要包括年亮段利率,借款标题,期限,金额,进度这5个字段:
2.按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找到动态加载的json文件,具体信息如下:
3.接着,针对以上抓包分析,我们就可以编写相关代码来爬取数据了,基本思路和上面的静态网页差不多,先利用requests请求json,然后再利用python自带的json包解析数据就行,如下:
程序运行截图如下,已经成功获取到数据:
至此,我们就完成了利用python来爬取网页数据。总的来说,整个过程很简单,requests和BeautifulSoup对于初学者来说,非常容易学习,也易掌握,可以学习使用一下,后期熟悉后,可以学习一下scrapy爬虫框架,可以明显提高开发效率,非常不错,当然,网页中要是有加密、验证码等,这个就需要自己好好琢磨,研究对策了,网上也有相关教程和资料,感兴趣的话,可以搜一下,希望以上分唤陆享的内容能对你上有所帮助吧,也欢迎大家评论、留言。